
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, Nov. 2014 3916
Copyright © 2014 KSII

Computational Analytics of Client
Awareness for Mobile Application
Offloading with Cloud Migration

Uma Nandhini* and Latha TamilSelvan

Department of Information Technology, School of Computer, Information and Mathematical Science
B.S.Abdur Rahman University, Vandalur, Chennai-600048, Tamil Nadu, India

[e-mail: umaudhay@gmail.com, latha.tamil@bsauniv.ac.in]
*Corresponding author: Uma Nandhini

Received May 14, 2014; revised July 26, 2014; revised September 3, 2014; accepted September 10, 2014;

published November 30, 2014

Abstract

Smartphone applications like games, image processing, e-commerce and social networking
are gaining exponential growth, with the ubiquity of cellular services. This demands
increased computational power and storage from mobile devices with a sufficiently high
bandwidth for mobile internet service. But mobile nodes are highly constrained in the
processing and storage, along with the battery power, which further restrains their
dependability. Adopting the unlimited storage and computing power offered by cloud servers,
it is possible to overcome and turn these issues into a favorable opportunity for the growth of
mobile cloud computing. As the mobile internet data traffic is predicted to grow at the rate of
around 65 percent yearly, even advanced services like 3G and 4G for mobile communication
will fail to accommodate such exponential growth of data. On the other hand, developers
extend popular applications with high end graphics leading to smart phones, manufactured
with multicore processors and graphics processing units making them unaffordable.
Therefore, to address the need of resource constrained mobile nodes and bandwidth
constrained cellular networks, the computations can be migrated to resourceful servers
connected to cloud. The server now acts as a bridge that should enable the participating
mobile nodes to offload their computations through Wi-Fi directly to the virtualized server.
Our proposed model enables an on-demand service offloading with a decision support
system that identifies the capabilities of the client’s hardware and software resources in
judging the requirements for offloading. Further, the node’s location, context and security
capabilities are estimated to facilitate adaptive migration.

Keywords: Mobile cloud computing, computation offloading, cloud migration, Wi-Fi,
client aware cloudlet, power aware computing

http://dx.doi.org/10.3837/tiis.2014.11.014

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3917

1. Introduction

Technological advancements in wireless communication and mobile technology in portable
devices have become integrated into the fabric of everyday life. With increased mobility,
standalone applications and remote access mobile applications have become the prime focus
of the next generation app developers and their users. This trend of the mobile ecosystem is
fast colluding with the services offered by cloud computing, to form the newly emerging
mobile computing paradigm called Mobile Cloud Computing. This shift in Information
Technology and on-demand service delivery driven by economies, paved the way for this
transition and paradigm shift towards next generation computing. Cloud computing provides
a shared pool of virtualized resources that are dynamically configurable and managed by
computing resources, which are delivered on demand to the end user over the available
networks. It provides flexibility and mobility of information, by abstracting and decoupling
it from the underlying technology, and offers it at a negligibly low cost of the pay per use
model. However, the actual realization of these benefits is far from being achieved for
mobile applications. According to Gartner, mobile phones are expected to overtake personal
computers as the most common web access devices, which will be an entry point and
interface for cloud online services. Smartphones, being more superior to basic mobile phones,
possessing higher computation and sensors monitoring various parameters with advanced
connectivity, are used for video calling, social networking, e-commerce, gaming, GPS
navigation etc. In spite of all these advancements, smart phones are always
resource-constrained when compared to their non-mobile counterparts, because smart phones
are battery powered and dissipate heat that affects their computational capabilities. Moreover,
the processors that are in use are primitive in technology and their storage is absolutely
limited to their size. Even their wireless connectivity has bounds with interference, when
compared to wired networks. Therefore, mobile phones are incapable of executing high end
offline applications like augmented reality, image processing, file format conversions, face
recognitions, business applications and other multimedia rich applications. On the other hand,
connecting to online applications directly, using mobile internet via 2G or 3G requires an
optimal data rate with no network congestion. Going by the present scenario, the
mobile-connected devices will soon exceed the human population on earth, and with 10
billion devices will create an inevitable ‘digital data storm’, if connected. The growing
demand for rich multimedia content and applications online needs better data capacity of
mobile operators, which in turn, leads to increased capital and operational expenditure.
Increases in cost of the order of tens of millions on new infrastructure will have to be borne
by the subscriber, leading to an increase in the average billing cost. Hence, a location based
infrastructure like Wi-Fi networks will alleviate the congestion problem and network
availability to combat the ‘digital traffic jam’. To achieve adaptable computation facilities,
either hardware or software, needs a capable technological transformation. Hardware
changes can be done to a certain extent, and they are manufacturer specific, where the
battery performance grows only at 5 percent when compared to the exponential growth of
other technologies. The only possible solution is at the software level, by provisioning the
computations to nearby resourceful servers.

Computation offloading is a procedure, whereby mobile devices identify any nearby
adaptable infrastructure that has the potential to compute the given task at a substantially
reduced time, and send the results back to mobile devices. This process can drastically lessen
the battery power consumption, and increase the related hardware performance. This is

3918 Uma et al.: Computational Analytics of Client Awareness for Mobile Application Offloading with Cloud Migration

different from the traditional client-server architecture, where a thin client always migrates
computation to a server. Computation offloading is different from the migration model used
in multiprocessor systems and grid computing, where a process is migrated for load
balancing [1]. The purpose of this paper is to provide a vision for the future, whereby these
mobile devices can exchange data that are geographically constrained. Some of the enabling
applications that could benefit from offloading data to the nearby servers are, for example, a
robot that navigates around and needs to identify every object in its path. If the processor is
slow, then a real time analysis based on location awareness could not be done. Another
application that ascertains context awareness is, multiple sensors connected to a user,
sending real time information like GPS, temperature and humidity which need analysis; then
offloading proves to be an effective solution. For a client aware computing, consider multiple
clients that participate in an ad-hoc network; if requirements like power and processing
capabilities are a constraint for the client, the client could be supported by the surrogate
system.

The objective of our work is to propose a cloudlet framework in a mobile cloud
environment, where it provides a transparent elastic augmentation of mobile device
capabilities via ubiquitous wireless access, to cloud storage and computing resources. Also,
our paper focuses on the context and client awareness for dynamic adjusting of offloading to
changing operating conditions, by preserving the available sensing and interactivity
capabilities of mobile devices. The following sections discuss the related works and issues
involved. In section 3, we provide detail system architecture of the offloading computation
model, and section 4 presents an algorithm for offloading conditions and a decision support
system. In the last section an experimental analysis follows after the implementation
scenario.

2. Related work

Recent Literatures on offloading computations, due to inherent drawbacks of cellular
services and smart phones, have clearly determined that considerable research is focused
towards future generation mobile cloud computing. One of the important works for
offloading data to the nearby server is from Satyanaranyana [2], proposing a model for
cloudlet based resource rich mobile computing, where there is a real time interactive
response with low latency, one-hop, high-bandwidth wireless access to the resource rich
server, called cloudlet. It highlights the proximity of mobile devices to the cloudlet, and if it
is connected through wireless, then VM can be synthesized in the cloudlet. The paper
proposes these concepts as a vision, and there are multiple deployment challenges to be met
before it is widely accepted.

Bo Han et al. [3] propose an opportunistic communication to facilitate information
dissemination in the emerging Mobile Social Networks (MoSoNets), thereby reducing the
amount of mobile data traffic. Offloading data between mobiles in Wireless LAN Hotspots
uses greedy heuristics, and random selection algorithms, to identify target users and target
application. Application-oriented offloading of computation is carried out in [4] where an
open, extensible architecture to enable context-aware navigation for the blind and visually
impaired, using a collaboration model of mobile and location specific information resource is
provided. High quality navigation guidance with rich context awareness using cloud maps, is
modeled. A potential application scenario that could be used for offloading data is suggested
by Nguyen [5], where a hybrid positioning system uses the mobile phone sensors for indoor
navigation. A dynamic offloading algorithm, using Lyapunov optimization, is proposed by

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3919

Dong Huang et al. [6]. The algorithm has low complexity to solve the problems, of which
software component needs to be offloaded, under the given network connectivity. The
mathematical model is simulated and the experimental results show that a considerable
amount of battery can be saved, by ensuring that the application execution time satisfies the
given time constraint.

Other researches provide a generic survey that highlights the importance of data
offloading through the concept of surrogate systems and cyber foraging, and further gives an
understanding of how mobile cloud computing functions. Marinelli [7] proposed an
application model called Hyrax, where the data is offloaded to the cloud, and the processing
is done, using map-reduce concepts of Hadoop framework. A learning and research
environment for computational science on mobile devices, to utilize the supercomputing
software like the compressible flow solver and Nano device simulation tool, was developed
by Park et al. [8]. An intelligent access scheme is emphasized by authors Klien et al. [9] and
Dinh et al. [10] for an understanding of various architectures, applications and approaches. In
[11], the authors present basic level comparison of the application models. However, as
location based applications are more prevalent in mobile phones, Lian Wang et al. discuss
the importance of saving energy when GPS based mechanisms are used [12]. The paper also
discusses how location updates and trajectory data can be simplified. Further, it provides a
survey of how other tracking applications perform when compared to their dynamic
approach. A novel approach developed by Fuhong [13] suggests a pre-pushing and
downloading model in a mobile peer-assisted streaming network to perform resource caching
for a demanding service. The optimal speed of downloading has been analysed using
Bellman’s theory to achieve the Nash Equilibrium. Having surveyed these papers, it can be
understood that the cloud is fast getting integrated into smartphones, to provide an excellent
amalgamation of service delivery to overcome the challenges and constraints faced by the
users.

2.1 Issues and challenges
Issues pertaining to offloading involve the efficient utilization of the nearby resources

through timely provisioning and scheduling. The challenges in designing an efficient
migration mechanism in a wireless device are cloudlet and cloud servers, because the
workload may not be stable due to unknown number of participating nodes. Some of the
issues that need to be addressed, in order to make an offloading decision are as follows.

Interoperability involves situations where several nodes connect to different types of
networks, and possibly the switching between networks does not affect the desired
functionality of the mobile devices. For example, a navigation robotic system might be
connected with all the generations of cellular networks along with Wi-Fi, Bluetooth, infrared
and NFC (Near Field Communication). During the offloading process, if only the Wi-Fi is
currently made available, then the other sensors could not execute their desired functionality,
which leads to the failure of the entire system. Hence, interoperable communication
capabilities that hide this interaction are an important design issue.

Context awareness perceives the user’s state and surroundings, based on which it
determines the application’s behavior. So, offloading should be done dynamically, by
effectively analyzing the present context, and adapting the system to different situational
constraints. It may be an active context where the application automatically adapts to the
discovered context, by changing the application’s behavior, or a passive context awareness in
which an application presents a new or updated context, and makes it possible for the user to

3920 Uma et al.: Computational Analytics of Client Awareness for Mobile Application Offloading with Cloud Migration

retrieve it later.
 Location awareness identifies the device location using a navigational system like the

GPS (Global Positioning System) or WPS (Wireless Positioning System), and making an
effective decision in predicting the movement. Issues related to routing based on location are
key factors to deliver the voluminous data in the shortest route, in case the node is out of
reach for the surrogate system, but still connected through the wireless network.

Client awareness judges the capabilities of the client devices, using a central profile
management, to provide flexibility to meet the expanding user needs. Device attributes differ
in terms of screen size, input method, processing power and available memory; hence, the
cloudlet should fine-tune the services depending on these attributes. For example, a device
can perform more when used in Wi-Fi than with other networks, or it can have advanced
capabilities for rendering images.

Security and Privacy is a prominent issue when mobile devices are integrated with
cloud [16], [17]. In general, mobile devices are vulnerable to viruses, worms and other
malicious codes, due to the infeasibility of their performing a complete security scan, while
providing various services. Hence, an untrustworthy adversary may inflict damage by
injecting malicious codes that may change an application’s behavior, thereby compromising
the integrity of the user’s data. Security issues like data corruption, data leakage, and denial
of service, and privacy issues like identity theft, data privacy and location monitoring, are the
challenges faced during mobile cloud computing. These issues could be addressed by
implementing secure systems through hardware based encryption, and certificate based
cryptographic encryption, thus providing a trusted environment [14], [18].

Resource allocation and Scheduling is required when multiple nodes participate in the
offloading process [22], [23]. When the workload is heavier or when there is a dynamic
change in the wireless environment due to mobility, then proper provisioning of the
resources to the available dedicated servers requires a scheduling algorithm [5]. Also, in case
of a fault, the network must be tolerant enough to allocate resources temporarily to another
server, until the fault is rectified.

Power awareness is the most important issue in any wireless device, and in the present
scenario it is the most significant justification for offloading, leading to the evolution of
mobile cloud computing. Analyzing the battery power saved, will make the decision support
system in the mobile to judge the conditions for offloading. Our work focuses on the issues
of client awareness and power saving attributes, by offloading a video file for conversion.

3. Computation Offloading

Offloading Computation to a nearby server for common utility applications is the primary
objective, and then migrating it to a cloud for complex applications, is the foundation of our
research. So, the need for a nearby Resource-rich Middleware (RM) server in the initial
phase and sidelining direct connectivity to the cloud results in huge cost benefits. For a
smartphone to be connected to the cloud, it should always be connected to the mobile
internet with subscription, depending on data traffic. Since most of the applications are
complex, the data rate will be heavy, and this can lead to huge cost and traffic, and
subsequently network congestion. Apart from this, every cloud service offered has to be paid
depending on the time and usage.

Cost of Cloud offloading = Mobile Internet cost + Cloud Service Cost (1)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3921

 Mobile Internet Cost = Cost per Byte Transferred * Bytes Offloaded per Application
 + Cost of Power Utilized (2)

Cloud Service Cost = Cost of Bytes Transferred + Cost of Service Type (3)

This is just the normal usage cost for every consumer, who uses cloud services through

the internet. Other important hidden costs include the battery, whose life depreciates when
too much of computation keeps the mobile running all the time, and the heat so generated
from the battery may affect other components as well. Thus offloading computation to a
nearby resource rich server via Wi-Fi is a one hop solution involving high data rate
connectivity with less energy consumption. Connecting to a nearby server through Wi-Fi is
extremely simple using a Wi-Fi router acting as an access point. The configuration of a
resource rich server for the offloading process need not necessarily have to be a
multi-processor blade server or rack server, because for computing mobile based applications,
a desktop or laptop computer with dual core processing and sufficient memory, is enough.
Nowadays, most of the users spend more time on their smartphones than on their desktops;
these idle machines could be made as one of the offload processing machine or surrogate
system. More than that, the growing popularity of the Wi-Fi hotspot around the globe is
offered at a negligible cost everywhere and anyone can create a hotspot in their vicinity in
seconds. The vision of this computation offloading leading to mobile cloud computing, will
make the Wi-Fi hotspots that are now limited to hotels, cafes, airports, etc., to be extended to
residential localities, apartment complexes, hospitals, enterprise buildings, educational
institutions, and event locations. Thus, the next generation mobile communication system
could well be the scenario of Wi-Fi Service management platform.

 Our aim of offloading mobile data to a Wi-Fi connected system, involves several key
infrastructures like the Wi-Fi Access Points (AP), Computational Analytics Engine (CAE),
Mobile User Interface Application (MUIA), Client Awareness and Assessment Protocol
(CAAP), Cloud Migration Service (CMS) and links to multiple Cloud Services. The
architecture of our proposed model is depicted in Fig. 1; it shows how promptly the system
work in coordination, to assess the need for an application and when to migrate the service.

Fig. 1. Architecture of the Computation Offloading Process

Computati
on

Analytics
Engine –
Mobile

Extension

Mobile
User

Interface
Agent

Access
Point

Client

Awareness
and

Assessment
Protocol

Cloud
Migration

Service

Internet

Computatio
n Analytics

Engine

Mobile Terminals
One Hop

Offloading Resource Rich Servers Cloud

Computatio
n

P

Dedicated

3922 Uma et al.: Computational Analytics of Client Awareness for Mobile Application Offloading with Cloud Migration

There are two stages in our architecture: offloading computation to a cloud-like offline
resource rich system, and online cloud migration. The primary focus of our research is only
in the offline mode, and to satisfy certain requirements we move on with migration to the
cloud.

3.1 Stage 1: Offloading to Resource Rich Offline Servers.
In this stage, the communication is done via a wireless interface, preferably a Wi-Fi

device, connecting the two end-points, namely, the user’s mobile devices/terminals and the
offline resource rich server. The mobile interface is a client program that accepts the use case
and identifies the type of application, and performs a basic check to locate the access point.
The interface acts as an agent between the Computational Analytics Engine of the mobile
terminal and the offloading server. Most of the analysis for taking a decision to offload is
based on several criteria, which are undertaken at this end. Once the application is launched
for service, the decision criteria that are needed to be taken and analysed by the CAE, are:

• Perform an authentication to establish the identity of the mobile user.
• Perform the handshaking process to exchange protocols for data communication.
• Whether the mobile processor can process the application.
• If it can, then how much time will it take to complete the task?
• Power utilized if the computation is done within the mobile terminals.
• Calculate the time taken for the application to synchronize and compute at the server.
• Time taken to transfer and receive the application code for the given bandwidth.
• Compare and take a decision whether to offload or compute within.

Once the application is offloaded as per the decision made at the user’s end, then for

better service the surrogate’s CAE must:

• Identify its clients and analyze the attributes of the clients
• Identify the application and its attributes
• Identify the context and behavior
• Ensure security capabilities of client devices
• Location based service offloading

Now, the application is offloaded, and the computation process begins in the surrogate

server. Meanwhile, the CAAP judges the ubiquitous nature of the mobile device, and
provides an alternative to back up the completed application in the cloud storage. This would
be done, only if the mobile is out of range, or the MUIA requested an option in its initial
settings.

3.2 Stage 2: Offloading to Cloud Servers
In this stage, the offloading for computation can be done either directly to the cloud

servers, or indirectly by the CAAP, based on the resource availability of the surrogate system.
Direct offloading to cloud will be defined by the initial user preference that is provided as an
additional component in the MUIA. Such a kind of situation arises when:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3923

• The user might be moving away from the vicinity of the surrogate system as soon as he
offloads the complex task.

• The device’s battery is limited, which could enable to offload but could not receive.
• When the user thinks that the device would be busy with another task that has a higher

priority, and is not in a position to get interrupted.

Indirect offloading is done with the judgment made by the client awareness, and the
assessment protocol and computational analytics engine. Some of the scenarios for indirect
offloading are:

• If the given application could not be found in the intermediate server, this is because the

surrogate system would have applications only for a frequently used one.
• Complex applications like map-reduce, recommendation services engine, and non-

compatible applications would be found only in online cloud servers.
• Client awareness and context awareness may force the system to forward directly to be

serviced by cloud providers.
• Some applications may be only cloud specific, because of the device’s direct connectivity

with a paid cloud service account.

4. Proposed offloading decision algorithms

The decision to offload involves multiple situations, which are needed to be monitored
before and after the process of offloading the task for computation. Before any task is
offloaded, the system must analyse the requirements for the process, and set a threshold for
initiation. After some basic steps are completed, the task is set for offloading to the
intermediate server for computation; while doing so, the other parameters like distance,
client capabilities and their context are computed. The most important criterion which is also
the foremost issue in the formation of the mobile cloud, is client aware computing, which
includes power management and process management. The following subsections define the
algorithm for various parameters that contribute to the success of the computation offloading
process.

4.1 Client Awareness and Assessment Protocol
The cloud Infrastructure must accommodate wide ranges of client devices, from

smartphones, tablets and digital assistance to other automated embedded devices that are
connected to the cloud. The performance and security issues that are manageable by these
clients are very limited in our computing environment. Hence, development towards
intelligent clients that have advanced management infrastructure with enhanced energy
aware performance features is a key to sustain the growth of mobile devices. One such
enhancement to the existing mobile infrastructure is the introduction of static computers to
support the resource constrained mobile devices through resource augmentation. While
introducing the computers as a surrogate system we need to assess multiple clients’
computing power along with their capabilities and context. For delivering quality user
experience, the computational capabilities of the mobile devices must be assessed before
taking a decision to offload the task. Once the decision to offload has been taken, then the
attributes are stored in the server for successive computational policy analysis. Some of the
clients’ attributes are listed in Table 1. These attributes help the resource-rich system to

3924 Uma et al.: Computational Analytics of Client Awareness for Mobile Application Offloading with Cloud Migration

identify the resource-poor devices, and keep the information in store for future reference.
The protocol that defines the CAAP can be sequenced in the following steps, based on the
sequences diagram and flow diagram, as explained in the subsequent section using Fig. 2
and Fig. 3 respectively.

Table 1. Client Attributes
Device Attributes Application Attributes Context Attributes

Mobile Device
USSID

Type of Application- Offline or
Online

Battery Power

MAC address Size of Application Type of Service

Network Capability-
Bluetooth/Wi-Fi

Memory Utilized when running Social Situation

Security Certificates No of Threads per Application Time Context

Privacy Constraints No of times offloaded Geographical Location

Hardware & Memory
Configurations

Other applications used through
Wi-Fi

Mobility pattern

Operating System Concurrent Processes handled by
the Operating System

Context Aware Scheduling

 Step 1: The decision to offload starts when a load imbalance is triggered, due to the
initiation of an application for the first time.

Fig. 2.Offloading Decision

START
(WHEN LOAD
IMBALANCE IS

TRIGGERED

Estimate time if
executed within the

mobile

Estimate
Offloading Time at

RMServer

Identify Wi-Fi
Hotspots

Synchronize with
Server

Server Identifies
Client Aware

Attributes

Time Task
Offloading =
T(Transfer) +
T(Compute)

Offload if Power,
Time and

Resources are
saved

Compare Power
and Efficiency

Task
Offloaded

Mobile
Devices Cloud Support

Computation at
Server

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3925

1. Mobile Process Threshold {
2. Identify ApplicationType, ApplicationSize
3. For Task > Threshold {
4. Trigger LoadImbalance, Start MUIA {
5. Register DeviceUSSID, DeviceMACID with RMServer }
6. Initiate CAEmobileextension
7. Proceed to OffloadingDecision

Step 2: The decision to offload depends on the estimated time to execute the process, or if
the task of the given application in the mobile is larger than the time taken by the RM Server.
This can be estimated by emulating the application to execute a part of the task. Every
running task comprises of millions of instructions, and a part of it could be initialized to
estimate the total number of instructions. Given the processor’s execution speed and
instruction size, the time is calculated.

Step 3: Once the time taken for mobile computation is estimated, then, on the other hand, the
same task is sent over the Wi-Fi medium to the server. At the server, the registered mobile is
validated, and the same process of time calculation is done. The total time for execution and
transfer is summed, for comparison with the execution time in the mobile.

 Fig. 3. Offload Protocol Time Estimate

8. Execution Time inMobile{
9. InitializeApplication
10. Identify TotalInstructions for Task, ProcessorSpeed
11. Time= TotalInstruction/Processor Speed }

12. OffloadDecision
13. if{
14. ExectionTimeinMobile (TMx) >> TotalExecutionTimeinServer (Ttotal)
15. PowerConsumedinMobile >>PowerConsumedinMobilewhenOffloaded }
16. else { ExecutewithinMobile

MOBILE MUIA RM Server

Execution
time within

mobile
(TMx)

Ttr

Ttr

Tist

Total
Offload

time
(Ttotal)

Time

Execution in
Server
(TRMx)

3926 Uma et al.: Computational Analytics of Client Awareness for Mobile Application Offloading with Cloud Migration

Step 4: Conditions for the threshold are set to offload the task to the nearby server, if the
power and time are saved considerably. The threshold condition is a variable that depends on
the application that is being executed.

Generally, when an application, like a full length movie of size greater than 500MB, is to be
converted to another format, then the estimated time and power would prefer offloading as
the solution for faster execution. To accelerate the performance of the application being
executed by the server, a distributed computing approach could well be the solution for
enhancement, by having more offloading servers computing the task simultaneously. Once
the execution is completed, the task is sent back to the mobile device if available nearby; else,
the completed file is stored in the cloud server for future access. The decision to push the
task to the cloud storage is taken, by assessing the CAAP and the initial status of the client’s
context and present status of location. In situations, where the client is too far away, then a
notification is sent to the client for immediate access of the file that is temporarily being
stored in the RM server. A Time to Live (TTL) for the file in the RM server, signals the
client’s deadline to access the file. This notification may avoid pushing the file to the cloud,
thereby saving the storage cost in remote third party cloud servers.

4.2. Power Aware Computation
Of the many surveys undertaken worldwide for smartphone users, energy efficiency and

power are the main features that they encounter as a problem in mobile devices. Currently,
smartphones are used not only for voice-based communication, but for multiple applications
of day-to-day life, that acquire information on the fly. Thus, energy is a primary constraint of
mobile devices that need to be addressed through a power aware computing model [15]. The
following analysis explains the condition when offloading is required, and how to improve
performance through formulation.

Energy consumption is directly proportional to the number of instructions I to be
executed by the processor locally Im, where Im ranges from {0 - α} and Tm is the instruction
execution time for Im instructions. Mx is the execution speed of the mobile and Pm is the
power utilized at the local execution that is within the mobile.
The energy utilized/consumed at the mobile terminal is given in equation (4).

 𝐸𝑚 = 𝑃𝑚∗ 𝐼𝑚∗ 𝑇𝑚
 𝑀𝑥

 (4)

The Computation of N instructions in a mobile takes N/Mx seconds where N>0 and Mx≥0.
Similarly, the computation of N instructions in the server takes N/Sx seconds, where Sx is the
execution speed for the task in a resource rich server in other words it is the processor speed

17. ExecutionatServer{
18. if
19. TaskComplete { Send to MobileDevice }
20. else (Identify Context and Location of Mobile)
21. Notify = TimeToLive of file in RM Server
22. NotificationTime =0;
23. then
24. Store in CloudStorageServer for later access }

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3927

of RM Server. The energy Es, utilized at the offloading server is

 𝐸𝑠 = 𝑃𝑠 ∗ 𝐼 𝑠 ∗ 𝑇 𝑠
 𝑆𝑥

 (5)

Eq. 5 depicts only the energy consumed by the server, but to compute the complete

energy requirements, we need to identify the other parameters. Some of the external and
internal parameters are transfer energy, idle energy, additional coding transfer, internet
support and initial setup time.

Let D be the task or data that is to be offloaded, and hence, D ∈ I, where D’s size could
be limited to a threshold value Dt

s. The threshold value is probably a variable that depends on
the type of application. Consider for example, in a file conversion the threshold depends on
the bandwidth (Bwifi), client device capabilities (Mproc) and file size (Dsize).

D ∈ I {D>= Dt
s} (6)

where, Dt

s belongs Bwifi ⋀ Mproc ⋀ Dsize (7)

It can be inferred from the above equation, that for an ideal condition to improve the
performance of offloading, first the amount of data exchanged should be minimum: second,
the bandwidth of Wi-Fi should be in a range with good signal strength, and third, the
surrogate system should reasonably be with a server configuration.

Since the data transfer is connection oriented through Wi-Fi, the available bandwidth
Bwifi is a dependent variable for offloading, and the total time Ttotal to execute the task is given
by eq.(8).

 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑡𝑟 + 𝑇𝑥 (8)

Here Ttr is the transfer time of the data in the Wi-Fi medium without accessing any
internet service. It includes the time to transfer the raw data from mobile to RM server, and
time to transfer the completed data from RM server to mobile client. Tx is the time taken for
the RM server to execute N number of instructions, which is given as the Total number of
instruction/Processor Speed of the server, as mentioned below in eq. 9.

 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝐷
 𝐵𝑤𝑖𝑓𝑖

+ 𝑁

 𝑆𝑥
 ; 𝑤ℎ𝑒𝑟𝑒 �

𝑇𝑡𝑟 = 𝐷
𝐵𝑤𝑖𝑓𝑖

𝑇𝑥 = 𝑁
𝑆𝑥

 (9)

But, the mobile needs some time to initiate the request; so

 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑡𝑟 + 𝑇𝑥 + 𝑇𝑖𝑠𝑡 (10)

where 𝑇𝑖𝑠𝑡 is the Initial Set up Time. Now, if the computation process requires codes

also to be offloaded from the mobile, then the time taken for the code Tcode to be sent to the
server needs to be considered. Also, if the code is not available in the mobile, and if it needs
to be downloaded from the cloud, then the extra time Tcloud for cloud service should be
included in the total computation time.

3928 Uma et al.: Computational Analytics of Client Awareness for Mobile Application Offloading with Cloud Migration

 𝑇𝑡𝑜𝑡𝑎𝑙 = �
 𝑇𝑡𝑟 + 𝑇𝑥 + 𝑇𝑖𝑠𝑡 + 𝑇𝑐𝑜𝑑𝑒 , 𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑒𝑑 𝑓𝑟𝑜𝑚 𝑚𝑜𝑏𝑖𝑙𝑒

 𝑇𝑡𝑟 + 𝑇𝑥 + 𝑇𝑖𝑠𝑡 + 𝑇𝑐𝑙𝑜𝑢𝑑 , 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑙𝑜𝑢𝑑

 (11)

Thus, the total energy to offload includes the transfer power, power to compute by the
server, power used during initiation by the mobile, and the idle power of the mobile while
the server computes.

 𝐸𝑂𝑓𝑓𝑙𝑜𝑎𝑑 _𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑡𝑟 ∗ 𝑇𝑡𝑟 + 𝑃𝑠 ∗
 𝐼𝑠
 𝑆𝑥

+ 𝑃𝑖𝑠𝑡 ∗ 𝑇𝑖𝑠𝑡 + 𝑃𝑖𝑑𝑙𝑒 ∗ 𝑇𝑖𝑑𝑙𝑒 (12)

Thus, in order to offload, the energy utilized or consumed by the mobile should not be
greater than that for not offloading, i.e.

Em – Eoffload_total >>0 (13)

4.3. Process Aware Energy Computation
When not offloading, i.e., when the task is computed in the mobile terminal itself, then

we can also consider the energy consumed by other applications and processes that are
running concurrently.

 𝐸𝑚 = 𝐾 ∗ (𝑃𝑚∗ 𝐼𝑚 ∗ 𝑇𝑚
 𝑀𝑥

) + (𝑃𝑚∗ 𝐼𝑚∗ 𝑇𝑚
 𝑀𝑥

) (14)

where K is the number of other applications running concurrently.

4.4. Cloud Migration for Computation
The option of cloud migration for computation offloading arises, when the context and

capabilities of the resource-rich server are constrained due to various factors. Consider a
situation of our earlier problem of a video file format conversion. In this case, the target
server should indeed have the necessary codecs for the requested format. If it is not found in
the RM Server then, the user need not be denied the option of offloading, but can be given an
option of migration to cloud services. Migration of computation to the cloud enhances the
idea of mobile cloud computing to the next level boundary less mobile access.

Fig. 4. Data Flow for Cloud Migration

Mobile MUIA
Task RM

Server

CAE-ME

CAAP

CAE

Cloud
Services

Completed Task

Attributes
Exchange

Cloud
Vendor

Completed Task

Cloud
Migration

3rd Party
Component

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3929

Having ported the files to the cloud server, the cloud services will identify the task and
execute accordingly. The execution of the video file format conversion will be done at a cost
that includes the cost of storage and third party component, which is necessary for codecs
integration. The cloud migration and its services are initiated as in Fig. 4, by the attributes’
exchange mechanism, between the server’s client aware protocol and the user interface.

5. Implementation
 We have evaluated our offloading process, using the format conversion application for

video files that converts any given format to .mp4 standard. The reason behind using this
application is that, the performance bottleneck can be easily identified, where most of the
process involves complex algorithms that are to be computed for every frame, and the pixel
of information in the video. The hardware we use in the evaluation is listed in Table 2.

Table 2. Hardware components of Mobile Device and Resource Rich Server

Hardware Client Device RM Server Wi-Fi Router

Processor ARM Intel i3 dual core Broadcom
Speed 400 MHz 3.2GHz 54Mbps

Memory 256MB 2GB Nil
Connectivity Wi-Fi/2G Wi-Fi/ ADSL IEEE 802.11 b

Operating Sys. Android 4.0 Windows 7 Dell WLAN A23 5.10

5.1. Results and Analysis
The following is the sample test case for 10 video files, which are converted to the .mp4
format within the mobile device. In Table 3, the original file of the Audio Video Interleave
(.avi) format with its size in bytes and its video length in minutes is given for reference.

Table 3. Original movie file properties
S. No. File Name Size Video Length(min)

1 Session.avi 18.76 MB 00:03:35
2 Two.avi 146.19 MB 00:06:45
3 Athu.avi 225.18 MB 00:18:07
4 Friend.avi 322.82 MB 00:26:01
5 Hai.avi 456.32 MB 00:21:23
6 David.avi 504.81 MB 00:40:38
7 Lost.avi 648.06 MB 00:52:10
8 Veera.avi 706.48 MB 00:56:52
9 Linkin.avi 881.78 MB 01:11:01

10 Jodi.avi 1.06 GB 01:21:48

 The time taken for conversion to the .mp4 format, its battery consumed in percentage,
and the size it occupies in the external storage space of the mobile after conversion are listed
in table 4. For conversion purpose, the rate at which the number of frames per second is
being converted is considered for evaluation. Also, we have taken three different test case
scenarios, in terms of quality, that is, the resolution of pixel value with 480 x 360, which is a
downsizing of the quality. The second test case has the original quality of 960 x 720 as it is,
and the third has a higher quality pixel ratio of 1024 x 768, that is of HD quality. The

3930 Uma et al.: Computational Analytics of Client Awareness for Mobile Application Offloading with Cloud Migration

preliminary analysis clearly shows that, as the size of the file increases, the time to execute
or convert the original file format from .avi to .mp4 increases proportionally. This, in-turn,
fuels the battery power to drain accordingly, and utilizes the maximum energy. The Lowest
resolution of 480 x 360 is converted using mobile and its battery usage is noted in Table 4.

Table 4. Conversion within the mobile at 480 x 360 resolutions
File Name Size Frames/

Second
Time Taken Battery

(%)
Session.mp4 23.62 MB 17 00:04:26 2

Two.mp4 49.91 MB 10 00:21:46 5
Athu.mp4 124 MB 12 00:41:06 8

Friend.mp4 177 MB 11 00:35:25 7
Hai.mp4 148 MB 13 00:59:00 12

David.mp4 278 MB 12 01:24:36 19
Lost.mp4 357 MB 11 01:53:35 21

Veera.mp4 389 MB 12 01:58:20 23
Linkin.mp4 486 MB 11 02:41:12 40
Jodi.mp4 620 MB 12 03.04.34 45

Table 5, shows that the time taken for converting to the original resolution is more, in
accordance with the size of the file.

Table 5. Conversion within the mobile at 960 x 720 resolutions

File Name Size Frames/
Second

Time
Taken

Battery
(%)

Session.mp4 24.18 MB 7 00:22:10 3
Two.mp4 52.95 MB 10 00:20:15 4
Athu.mp4 132 MB 14 00:34:40 7

Friend.mp4 178 MB 15 00:27:50 6
Hai.mp4 151 MB 8 01:10:20 13

David.mp4 278 MB 14 01:12:30 15
Lost.mp4 415 MB 13 01:44:03 20

Veera.mp4 403 MB 13 01:41:30 18
Linkin.mp4 0.94 GB 10 02:41:50 39
Jodi.mp4 1.2 GB 12 03.15.45 44

The results of Table 6, shows that a heavier file certainly drains the battery power.

Table 6. Conversion within the mobile at 1024 x 768 resolutions
File Name Size Frames/

Second
Time

Taken
Battery

(%)
Session.mp4 24.18 MB 7 00:12:42 3

Two.mp4 57.29 MB 5 00:40:24 7
Athu.mp4 143 MB 5 01:30:30 21

Friend.mp4 178 MB 5 01:18:60 19
Hai.mp4 154 MB 5 02:08:10 26

David.mp4 278 MB 5 03:23:03 45
Lost.mp4 448 MB 5 04:09:60 63

Veera.mp4 433 MB 6 03:56:30 48
Linkin.mp4 1.02 GB 5 05:54:55 65
Jodi.mp4 1.35 GB 5 06.55.45 78

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3931

Table 7 below depicts the conversion process being undertaken in the server at a

resolution of 960 x 720.The result shows that the time taken for conversion is the same as the
length of the video file, and the size is almost double that of the original file.

Table 7. Conversion in the Offloaded server at 960 x 720 resolutions

File Name Size Video Length Time Taken

Session.mp4 44.79 MB 00:03:35 00:03:35
Two.mp4 238 MB 00:06:45 00:06:45
Athu.mp4 581 MB 00:18:07 00:18:07

Friend.mp4 330 MB 00:26:01 00:26:01
Hai.mp4 557 MB 00:21:23 00:21:23

David.mp4 0.99 GB 00:40:38 00:40:38
Lost.mp4 1.72 GB 00:52:10 00:52:10

Veera.mp4 1.76 GB 00:56:52 00:56:52
Linkin.mp4 3.12 GB 01:11:01 01:11:01

Jodi.mp4 2.24 GB 01:21:48 01:21:48

Even though the time for conversion is dependent on the running time of the video, the

total time for offloading to the server, involves the transmission and receipt of the file. This
process of to and fro transmission is directly proportional to the size of the file, which has
been recorded in Table 8.

Table 8. Transfer time between the Mobile and the Server

File Name

Original File Transfer from the
Mobile to the Server

Converted File Transfer from the
Server to the Mobile

Size Time
Taken

Battery
(%)

Size Time
Taken

Battery
(%)

Session.mp4 18.76 MB 00:00:05 0.1 44.79 MB 00.00.11 0.5
Two.mp4 146.19 MB 00:00:19 0.4 238 MB 00.02.15 1
Athu.mp4 225.18 MB 00:02:10 1 581 MB 00.04.20 1.5

Friend.mp4 322.82 MB 00:03:00 1 330 MB 00.03.12 1
Hai.mp4 456.32 MB 00:03:50 1 557 MB 00.04.13 1.5

David.mp4 504.81 MB 00:04:13 1.5 0.99 GB 00.07.20 2
Lost.mp4 648.06 MB 00:05:01 2 1.72 GB 00.11.45 3

Veera.mp4 706.48 MB 00:05:15 2 1.76 GB 00.11.50 3
Linkin.mp4 881.78 MB 00:06:34 2 3.12 GB 00.20.46 5
Jodi.mp4 1.06 GB 00.07.33 2 2.24 GB 00.16.57 4

The total time taken for transferring a file for conversion and receiving it back, is

approximately between 15 seconds to 26 minutes at the most. The battery consumption for
relaying is much less for a mobile, in the range of 0.5 to 7 percent. Here, in our
implementation scenario, we have not considered the power utilized by the server for its
computation and transmission, because its consumption does not critically impact process of
offloading. The final analysis in Table 9 describes how efficiently the time and power are
utilized when offloading is carried out, by just adding the time and battery power of the
earlier analysis.

3932 Uma et al.: Computational Analytics of Client Awareness for Mobile Application Offloading with Cloud Migration

Table 9. Comparative analysis of Mobile and Server Computation for Time and Power

File Name
Computation Done Within the

Mobile
Computation Done in the

 Server
Total Size

Occupied in
Mobile in MB

Total
Time

Battery
(%)

Total Data
Transfer

Size in MB

Total Time
Taken

Battery
(%)

Session.mp4 42.94 00:22:10 3 63.55 00.03.16 0.6
Two.mp4 199.14 00:20:15 4 384.19 00.09.19 1.4
Athu.mp4 357.18 00:34:40 7 806.18 00.24.37 2.5

Friend.mp4 500.82 00:27:50 6 652.82 00.32.13 2
Hai.mp4 607.32 01:10:20 13 1013.32 00.29.26 2.5

David.mp4 782.81 01:12:30 15 1494.81 00.52.01 3.5
Lost.mp4 1063.06 01:44:03 20 2368.06 01.08.56 5

Veera.mp4 1109.48 01:41:30 18 2466.48 01.13.57 5
Linkin.mp4 1821.78 02:41:50 39 4001.78 01.38.21 7

Jodi.mp4 2260 03.15.45 44 3300 01.46.18 6

The analysis results play an important role in proving the efficiency of offloading. The
computation in the server proves to be more efficient when compared to the computation in
the mobile device itself. The graph in Fig. 5 refers to the performance of the proposed
algorithm. The testing is done with various sizes of the video file, and the graph shows in its
Y-axis the time duration for the conversion, and in the X-axis the size of video file.

Fig. 5. Analysis of the Conversion time within the mobile and the server

Thus, the values show that the offloading to the server takes less time, which stresses

the need for offloading to save time and computational process in mobile. The analysis in
Fig. 6 shows the graph for battery consumption, in terms of percentage in the X-axis, and the
corresponding time duration for computation in the Y-axis.

0

50

100

150

200

250

Time Taken for
Mobile
Computation

Time Taken for
Server
Computation

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3933

Fig. 6. Battery Performance between the mobile and Offloading Server Computation

The result shows that for the server offloading process, the battery consumed is very less,
that is within 5 to 7 percent, whereas for computation in the mobile it takes more than 25
percentage of battery power. Thus, it proves that the offloading strategy is an efficient way to
do computation, when the mobile is constrained in power and processing capabilities.

Table 10. Comparative Analysis of the Existing and Proposed Offloading Decision Schemes
Offloading

Decision
Schemes

Environm
ent

Application
Type

Cloud
Migrati

on

Static/Dyna
mic

Adaptation

N/W
Load

Decision
Attributes

Proposed RM
Server

Android Video
Conversion

Yes Dynamic &
Static

Very
High

Client and
Context

VM based
Cloudlet [2]

Virtual
Machine

KPresenter,
GIMP

No Static Low

Bandwidth

Hyrax [7] Hadoop Multimedia
Searching

No Static Very
High

Network
Limitations

MAUI [19] .NET Face
Recognition

No Dynamic Very
Low

RTT, Energy

Energy-Awar
e [20]

Java, RMI Image
Processing

No Static Very
Low

Energy

Weblets [21] C# Augmented
Reality

Yes Static &
Dynamic

High Latency

The analysis of similar offloading decision schemes given in Table 10, clearly prove that our
proposed computation architecture provide better service, in terms of high network load in a
dynamic adaptation policy. The decision to offload is primarily based on the client and the
context-aware capabilities in our system, whereas most of the other schemes are related only
to the network and power. Support for cloud migration is another important criterion to
weigh our system, which is essentially the future of mobile computing. Nowadays, many
cloud servers offer their service at very minimal or no cost; hence, mobile cloud computing
could well be the best choice for computation offloading.

0
5

10
15
20
25
30
35
40
45
50

Battery % for
Mobile
Compuation

Battery % for
Server
Computation

3934 Uma et al.: Computational Analytics of Client Awareness for Mobile Application Offloading with Cloud Migration

5.2. Future Directions

 Computation offloading is a future technique, with a simple solution to improve execution
efficiency of a mobile based system. Some of the real world applications that could be made
possible through offloading are, rendering a 3D animation, Natural Language Processing
(NLP) and Image Processing. In the first case, let us assume having a simple 3D animator
app in the mobile, which is used to create quick models and animations. In order to complete
the process of animation, we need rendering, which is a complex time and memory
consuming task when executed in any mobile device. It requires Graphics Processing Unit
(GPU) based computer system, which is found in server configurations. Thus, a local
execution in a nearby server through offloading via, Wi-Fi medium, will quickly serve the
purpose of rendering the animation to a movie file and deliver it back to the creator. In the
second example, for language processing, assume Optical Character Recognition (OCR)
software processing multiple images sent from various mobile devices connected through
wireless medium in a typical collaborative learning environment. Any Natural Language
Processing requires complex algorithms to be computed to execute even a simple task, which
is not a feasible option with mobile computing. Since, the source of data for NLP could be
easily captured using a mobile phone camera or any digital camera enabled with wireless
communication. These devices can communicate for getting serviced with the offloading
server for computation. Thus the incompetent processing power of the mobile could be
offloaded for efficient utilization. In the third case, when an image processing is done, there
are multiple processes like segmentation and feature extraction. It requires software like
MatLab, to do the processes for the input and extract the desired output. The future scope of
image processing like image mining and video search technique may be built as a thin client
mobile app with just a user interface, instead of developing it as native application. These
interfaces will always require a nearby server to do all the computation, thereby utilizing the
compute power, memory, and system load and as well, satisfy the most important issue of
battery life. Finally, the case of offloading need not be always with a local RM server. In
future, cloud connected mobile application will be the default choice in every operating
system running the mobile device.

6. Conclusion

The thrust towards the mobile cloud is greater than ever, as the need for volume-based
computation by the mobile community is susceptible to dearth of resources. This issue is
addressed by offloading computation for seamless interaction and integration of multiple
resources, supporting the needs of mobile devices. Our approach to provide an analysis and
migration services, that would indeed require offloading in a context and client aware
environment, have proved to be successful. The time and power analysis that are estimated,
by comparing the video file format conversion application in the mobile and cloudlet, have
helped us to understand the choice of having a nearby resource-rich server, offering service
to location based clients. To further extend the connectivity, the cloudlet holds the attributes
of multiple clients, to serve them better by offering solutions like computation and storage
from the public cloud. Henceforth, mobile cloud computing will become a good choice, for
communication to shift the paradigm to the next higher level, which integrates pervasive
nature to cloud access.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3935

References

[1] Karthik Kumar, Jibang Liu, Yung Hsiang Lu and Bharat Bhargav, “A survey of computation
offloading for mobile systems,” Mobile Network Application, Springer, vol. 18, no. 1, pp.
129-140, February, 2013. Article (CrossRef Link).

[2] Mahadev Satyanarayanan, Bahl P, Caceres R, Nigel Davies, “The Case for VM-based Cloudlets
in Mobile Computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14-23, December, 2010.
Article (CrossRef Link).

[3] Bo Han, Madhav V. Marathe, Jianhua Shao, Aravind Srinivasan, “Mobile Data Offloading
through Opportunistic Communications and Social Participation,” IEEE Transaction on Mobile
Computing, vol. 11, no. 5, pp. 821-834, May, 2012. Article (CrossRef Link).

[4] Pelin Angin and Bharat K. Bhargava, “Real-time Mobile Cloud Computing for Context-Aware
Blind Navigation,” International Journal of Next-Generation Computing, vol. 2, no. 2, 2011.
Article (CrossRef Link).

[5] Van Vinh Nguyen and Jong Weon Lee, “A Hybrid Positioning System for Indoor Navigation on
Mobile Phones using Panoramic Images,” Transaction on Internet and Information Systems, vol.
6, no. 3, pp. 835-850, March, 2012. Article (CrossRef Link).

[6] Dong Huang, Ping Wang and Dusit Niyato, “A Dynamic Offloading Algorithm for Mobile
Computing,” IEEE transactions on wireless communication, vol. 11, no. 6, pp. 1991-1995, June,
2012. Article (CrossRef Link).

[7] E.E.Marinelli, “Hyrax: cloud computing on mobile devices using Map Reduce, “DTIC
Document, Tech.Rep.,” September, 2009. Article (CrossRef Link).

[8] Sun-Rae Park et.al., “Intelligent u-Learning and Research Environment for Computational
Science on Mobile Device,” Transaction on Internet and Information Systems, vol. 8, no. 2, pp.
707-720, February 2014. Article (CrossRef Link)

[9] A. Klein, C. Mannweiler, J. Schneider, and H. D. Schotten, “Access schemes for mobile cloud
computing,” in Proc. of IEEE Eleventh International Conference on Mobile Data Management
(MDM), pp. 387–392, 2010. Article (CrossRef Link).

[10] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing: architecture,
applications, and approaches,” Wireless Communications and Mobile Computing, vol. 13, no.
18, pp. 1587-1611, December, 2011. Article (CrossRef Link).

[11] L. Guan, X. Ke, M. Song, and J. Song, “A survey of research on mobile cloud computing,” in
Proc. of IEEE/ACIS 10th International Conference on Computer and Information Science
(ICIS), pp. 387– 392, 2011. Article (CrossRef Link).

[12] D. Kovachev, Y. Cao, and R. Klamma, “Mobile Cloud Computing: A Comparison of
Application Models,” arXiv Cornell University Library, July 2011. Article (CrossRef Link).

[13] Fuhong Lin, Xianewi Zhou, Changjia Chen, “Novel Pre-pushing & Downloading Model in
Mobile Peer-assisted Streaming Network,” Transaction on Internet and Information Systems,
vol. 7, no. 12, pp. 3135-3148, December 2013. Article (CrossRef Link).

[14] Ji Yao, Jiguo Li and Yichen Zhang, “Certificate-Based Encryption Scheme without Pairing,”
Transaction on Internet and Information Systems, vol. 7, no. 6, pp. 1480-1491, June 2013.
 Article (CrossRef Link).

[15] Md. Sabbir Hasan, Eui-Nam Huh, “Heuristic based Energy-aware Resource Allocation by
Dynamic Consolidation of Virtual Machines in Cloud Data Center,” Transaction on Internet
and Information Systems, vol. 7, no. 8, pp. 1825-1842, August 2013. Article (CrossRef Link).

[16] Young Bae Yoon, Junseok Oh and Bong Gyou Lee, “The Establishment of Security Strategies
for Introducing Cloud Computing,” Transaction on Internet and Information Systems, vol. 7, no.
4, pp. 860-867,April 2013. Article (CrossRef Link).

[17] Chenlei Cao, Ru Zhang, Mengyi Zhang and Yixian Yang, “IBC-Based Entity Authentication
Protocols for Federated Cloud Systems,” Transaction on Internet and Information Systems, vol.
7, no. 5, pp. 1291-1312, May 2013. Article (CrossRef Link).

http://dx.doi.org/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1109/TMC.2011.101
http://perpetualinnovation.net/ojs/index.php/ijngc/article/view/107
http://dx.doi.org/10.3837/tiis.2012.03.004
http://dx.doi.org/10.1109/TWC.2012.041912.110912
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA512601
http://dx.doi.org/10.3837/tiis.2014.02.0023
http://dx.doi.org/10.1109/MDM.2010.79
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1109/ICIS.2011.67
http://arxiv.org/pdf/1107.4940v1
http://dx.doi.org/10.3837/tiis.2013.12.010
http://www.itiis.org/tiis/download.jsp?filename=TIIS_Vol6No12P18Dec2012.pdf
http://www.itiis.org/tiis/download.jsp?filename=5.%20TIIS-RP-2013-Apr-0258.R1.pdf
http://dx.doi.org/10.3837/tiis.2013.04.015
http://dx.doi.org/10.3837/tiis.2013.05.020

3936 Uma et al.: Computational Analytics of Client Awareness for Mobile Application Offloading with Cloud Migration

[18] Leyou Zhang, Yupu Hu, “New Constructions of Hierarchical Attribute-Based Encryption for
Fine-Grained Access Control in Cloud Computing,” Transaction on Internet and Information
Systems, vol. 7, no. 5, pp. 1343-1356, May 2013. Article (CrossRef Link).

[19] Cuervo E, Balasubramanian A, Cho D, Wolman A, SaroiuS, Chandra R, Bahl P, “ MAUI:
making smartphones last longer with code offload,” in Proc. of International conference on
mobile systems, applications, and services, pp 49–62, 2010. Article (CrossRef Link).

[20] Chen G, Kang B-T, Kandemir M, Vijaykrishnan N, Irwin MJ, Chandramouli R, “Studying
energy tradeoffs in offloading computation/compilation in java-enabled mobile devices,” IEEE
Transaction on Parallel Distributed System, vol. 15, no.9, pp. 795–809, September 2004.
Article (CrossRef Link).

[21] X. Zhang, S. Jeong, A. Kunjithapatham, and Simon Gibbs, “Towards an Elastic Application
Model for Augmenting Computing Capabilities of Mobile Platforms,” in Proc. of Third
International ICST Conference on MOBILe Wireless MiddleWARE, Operating Systems, and
Applications, LNICST 48, Springer, pp. 161-174, July 2010. Article (CrossRef Link).

[22] Hyukho Kim, Woongsup Kim and Yangwoo Kim, “A Pattern-Based Prediction Model for
Dynamic Resource Provisioning in Cloud Environment,” Transaction on Internet and
Information Systems, vol. 5, no. 10, pp. 1712-1732, October 2011. Article (CrossRef Link).

[23] Romeo Mark A. Mateo and Jaewan Lee, “Dynamic Service Assignment based on Proportional
Ordering for the Adaptive Resource Management of Cloud Systems,” Transaction on Internet
and Information Systems, vol. 5, no. 12, pp. 2294-2314, December 2013.
Article (CrossRef Link).

Uma Nandhini has obtained her B.E degree in the field of Computer Science and
Engineering from Bharathidasan University, India in 2002, and also obtained her
Master’s Degree in Computer Science and Engineering from Anna University, India in
2007. She is currently working towards her Ph.D. in the field of Information
Technology from B.S.Abdur Rahman University, India. Her major research area
includes, Cloud Computing, Mobile Communication and Energy Aware Computing.

Latha Tamilselvan has obtained her B.E degree in Electronics & Communication
Engineering from Bharathidasan University, India in 1990, M.E in Communication
Systems from Regional Engineering College, Bharathidasan University, India in 1995
and Ph.D. in Computer Science and Engineering from Anna University, India in 2008.
Her research interest includes Cloud Computing, Mobile Ad hoc Network and
Network Sec

http://dx.doi.org/10.3837/tiis.2013.05.023
http://dx.doi.org/10.1145/1814433.1814441
http://dx.doi.org/10.1109/TPDS.2004.47
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.170.3859
http://dx.doi.org/10.3837/tiis.2011.10.002
http://dx.doi.org/10.3837/tiis.2011.12.002

