• Title/Summary/Keyword: cloud-based virtual networks

Search Result 26, Processing Time 0.018 seconds

A Hybrid Cloud Testing System Based on Virtual Machines and Networks

  • Chen, Jing;Yan, Honghua;Wang, Chunxiao;Liu, Xuyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1520-1542
    • /
    • 2020
  • Traditional software testing typically uses many physical resources to manually build various test environments, resulting in high resource costs and long test time due to limited resources, especially for small enterprises. Cloud computing can provide sufficient low-cost virtual resources to alleviate these problems through the virtualization of physical resources. However, the provision of various test environments and services for implementing software testing rapidly and conveniently based on cloud computing is challenging. This paper proposes a multilayer cloud testing model based on cloud computing and implements a hybrid cloud testing system based on virtual machines (VMs) and networks. This system realizes the automatic and rapid creation of test environments and the remote use of test tools and test services. We conduct experiments on this system and evaluate its applicability in terms of the VM provision time, VM performance and virtual network performance. The experimental results demonstrate that the performance of the VMs and virtual networks is satisfactory and that this system can improve the test efficiency and reduce test costs through rapid virtual resource provision and convenient test services.

Dynamic Resource Allocation and Scheduling for Cloud-Based Virtual Content Delivery Networks

  • Um, Tai-Won;Lee, Hyunwoo;Ryu, Won;Choi, Jun Kyun
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.197-205
    • /
    • 2014
  • This paper proposes a novel framework for virtual content delivery networks (CDNs) based on cloud computing. The proposed framework aims to provide multimedia content delivery services customized for content providers by sharing virtual machines (VMs) in the Infrastructure-as-a-Service cloud, while fulfilling the service level agreement. Furthermore, it supports elastic virtual CDN services, which enables the capabilities of VMs to be scaled to encompass the dynamically changing resource demand of the aggregated virtual CDN services. For this, we provide the system architecture and relevant operations for the virtual CDNs and evaluate the performance based on a simulation.

Isolation Schemes of Virtual Network Platform for Cloud Computing

  • Ahn, SungWon;Lee, ShinHyoung;Yoo, SeeHwan;Park, DaeYoung;Kim, Dojung;Yoo, Chuck
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2764-2783
    • /
    • 2012
  • Network virtualization supports future Internet environments and cloud computing. Virtualization can mitigate many hardware restrictions and provide variable network topologies to support variable cloud services. Owing to several advantages such as low cost, high flexibility, and better manageability, virtualization has been widely adopted for use in network virtualization platforms. Among the many issues related to cloud computing, to achieve a suitable cloud service quality we specifically focus on network and performance isolation schemes, which ensure the integrity and QoS of each virtual cloud network. In this study, we suggest a virtual network platform that uses Xen-based virtualization, and implement multiple virtualized networks to provide variable cloud services on a physical network. In addition, we describe the isolation of virtual networks by assigning a different virtualized network ID (VLAN ID) to each network to ensure the integrity of the service contents. We also provide a method for efficiently isolating the performance of each virtual network in terms of network bandwidth. Our performance isolation method supports multiple virtual networks with different levels of service quality.

A Coordinated Heuristic Approach for Virtual Network Embedding in Cloud Infrastructure

  • Nia, Nahid Hamzehee;Adabi, Sepideh;Nategh, Majid Nikougoftar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2346-2361
    • /
    • 2017
  • A major challenge in cloud infrastructure is the efficient allocation of virtual network elements on top of substrate network elements. Path algebra is a mathematical framework which allows the validation and convergence analysis of the mono-constraint or multi-constraint routing problems independently of the network topology or size. The present study proposes a new heuristic approach based on mathematical framework "paths algebra" to map virtual nodes and links to substrate nodes and paths in cloud. In this approach, we define a measure criterion to rank the substrate nodes, and map the virtual nodes to substrate nodes according to their ranks by using a greedy algorithm. In addition, considering multi-constraint routing in virtual link mapping stage, the used paths algebra framework allows a more flexible and extendable embedding. Obtained results of simulations show appropriate improvement in acceptance ratio of virtual networks and cost incurred by the infrastructure networks.

A study on Cloud Security based on Network Virtualization (네트워크 가상화 기반 클라우드 보안 구성에 관한 연구)

  • Sang-Beom Hong;Sung-Cheol Kim;Mi-Hwa Lee
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.21-27
    • /
    • 2023
  • In the cloud computing environment, servers and applications can be set up within minutes, and recovery in case of fail ures has also become easier. Particularly, using virtual servers in the cloud is not only convenient but also cost-effective compared to the traditional approach of setting up physical servers just for temporary services. However, most of the und erlying networks and security systems that serve as the foundation for such servers and applications are primarily hardwa re-based, posing challenges when it comes to implementing cloud virtualization. Even within the cloud, there is a growing need for virtualization-based security and protection measures for elements like networks and security infrastructure. This paper discusses research on enhancing the security of cloud networks using network virtualization technology. I configured a secure network by leveraging virtualization technology, creating virtual servers and networks to provide various security benefits. Link virtualization and router virtualization were implemented to enhance security, utilizing the capabilities of virt ualization technology. The application of virtual firewall functionality to the configured network allowed for the isolation of the network. It is expected that based on these results, there will be a contribution towards overcoming security vulnerabil ities in the virtualized environment and proposing a management strategy for establishing a secure network.

High-Availability Virtual Communication for Cloud Access

  • Sirisutthidecha, Suthee;Maichalernnukul, Kiattisak
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3455-3473
    • /
    • 2016
  • Cloud computing is a paradigm in which information is permanently stored in servers on the Internet and cached temporarily on clients. Virtual private network (VPN) is the most widely used technology for secure cloud access. Unfortunately, VPN-based cloud services become unavailable when a VPN failure occurs. In this paper, we propose a new scheme to improve the availability of VPN connections against such failures, called high-availability virtual communication (HAVC). Unlike most of the multipath transmission schemes in the literature, the proposed scheme is implemented by using a virtualization technique, and its protocol functions are independent of existing networks - potential clients are not required to modify their applications or operating systems. Simulation results show that the HAVC can not only tolerate VPN failures but also achieve high transmission performance.

Pub/Sub-based Sensor virtualization framework for Cloud environment

  • Ullah, Mohammad Hasmat;Park, Sung-Soon;Nob, Jaechun;Kim, Gyeong Hun
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.109-119
    • /
    • 2015
  • The interaction between wireless sensors such as Internet of Things (IoT) and Cloud is a new paradigm of communication virtualization to overcome resource and efficiency restriction. Cloud computing provides unlimited platform, resources, services and also covers almost every area of computing. On the other hand, Wireless Sensor Networks (WSN) has gained attention for their potential supports and attractive solutions such as IoT, environment monitoring, healthcare, military, critical infrastructure monitoring, home and industrial automation, transportation, business, etc. Besides, our virtual groups and social networks are in main role of information sharing. However, this sensor network lacks resource, storage capacity and computational power along with extensibility, fault-tolerance, reliability and openness. These data are not available to community groups or cloud environment for general purpose research or utilization yet. If we reduce the gap between real and virtual world by adding this WSN driven data to cloud environment and virtual communities, then it can gain a remarkable attention from all over, along with giving us the benefit in various sectors. We have proposed a Pub/Sub-based sensor virtualization framework Cloud environment. This integration provides resource, service, and storage with sensor driven data to the community. We have virtualized physical sensors as virtual sensors on cloud computing, while this middleware and virtual sensors are provisioned automatically to end users whenever they required. Our architecture provides service to end users without being concerned about its implementation details. Furthermore, we have proposed an efficient content-based event matching algorithm to analyze subscriptions and to publish proper contents in a cost-effective manner. We have evaluated our algorithm which shows better performance while comparing to that of previously proposed algorithms.

Metamorphic Networks

  • Pujolle, Guy
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.3
    • /
    • pp.198-203
    • /
    • 2013
  • In this paper, we focus on a novel Internet architecture, based on the urbanization of virtual machines. In this approach, virtual networks are built linking specific virtual elements (router, switch, firewall, box, access point, etc.). A virtual network represents a network with an independent protocol stack that shares resources from the underlying network infrastructure. Virtualization divides a real computational environment into virtual computational environments that are isolated from each other, and interact with the upper computational layer, as would be expected from a real, non-virtualized environment. Metamorphic networks enhance several concepts related to future networks, and mainly the urbanization of virtual machines. We present this new paradigm, and the methodology, based on the worldwide metamorphic network platform "M-Net". The metamorphic approach could solve many complex problems, especially related to Cloud computing services.

FaST: Fine-grained and Scalable TCP for Cloud Data Center Networks

  • Hwang, Jaehyun;Yoo, Joon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.762-777
    • /
    • 2014
  • With the increasing usage of cloud applications such as MapReduce and social networking, the amount of data traffic in data center networks continues to grow. Moreover, these appli-cations follow the incast traffic pattern, where a large burst of traffic sent by a number of senders, accumulates simultaneously at the shallow-buffered data center switches. This causes severe packet losses. The currently deployed TCP is custom-tailored for the wide-area Internet. This causes cloud applications to suffer long completion times towing to the packet losses, and hence, results in a poor quality of service. An Explicit Congestion Notification (ECN)-based approach is an attractive solution that conservatively adjusts to the network congestion in advance. This legacy approach, however, lacks scalability in terms of the number of flows. In this paper, we reveal the primary cause of the scalability issue through analysis, and propose a new congestion-control algorithm called FaST. FaST employs a novel, virtual congestion window to conduct fine-grained congestion control that results in improved scalability. Fur-thermore, FaST is easy to deploy since it requires only a few software modifications at the server-side. Through ns-3 simulations, we show that FaST improves the scalability of data center networks compared with the existing approaches.

Efficient Provisioning for Multicast Virtual Network under Single Regional Failure in Cloud-based Datacenters

  • Liao, Dan;Sun, Gang;Anand, Vishal;Yu, Hongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2325-2349
    • /
    • 2014
  • Network virtualization technology plays a key role in cloud computing, which serves as an effective approach for provisioning a flexible and highly adaptable shared substrate network to satisfy the demands of various applications or services. Recently, the problem of mapping a virtual network (VN) onto a substrate network has been addressed by various algorithms. However, these algorithms are typically efficient for unicast service-oriented virtual networks, and generally not applicable to multicast service-oriented virtual networks (MVNs). Furthermore, the survivable MVN mapping (SMVNM) problem that considers the survivability of MVN has not been studied and is also the focus of this work. In this research, we discuss SMVNM problem under regional failures in the substrate network and propose an efficient algorithm for solving this problem. We first propose a framework and formulate the SMVNM problem with the objective of minimizing mapping cost by using mixed integer linear programming. Then we design an efficient heuristic to solve this problem and introduce several optimizations to achieve the better mapping solutions. We validate and evaluate our framework and algorithms by conducting extensive simulations on different realistic networks under various scenarios, and by comparing with existing approaches. Our simulation experiments and results show that our approach outperforms existing solutions.