KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.6
/
pp.2282-2303
/
2021
To solve the problems of heavy computing load and system transmission pressure in energy internet (EI), we establish a three-tier cloud-edge integrated EI network based on a cloud-edge collaborative computing to achieve the tradeoff between energy consumption and the system delay. A joint optimization problem for resource allocation and task offloading in the threetier cloud-edge integrated EI network is formulated to minimize the total system cost under the constraints of the task scheduling binary variables of each sensor node, the maximum uplink transmit power of each sensor node, the limited computation capability of the sensor node and the maximum computation resource of each edge server, which is a Mixed Integer Non-linear Programming (MINLP) problem. To solve the problem, we propose a joint task offloading and resource allocation algorithm (JTOARA), which is decomposed into three subproblems including the uplink transmission power allocation sub-problem, the computation resource allocation sub-problem, and the offloading scheme selection subproblem. Then, the power allocation of each sensor node is achieved by bisection search algorithm, which has a fast convergence. While the computation resource allocation is derived by line optimization method and convex optimization theory. Finally, to achieve the optimal task offloading, we propose a cloud-edge collaborative computation offloading schemes based on game theory and prove the existence of Nash Equilibrium. The simulation results demonstrate that our proposed algorithm can improve output performance as comparing with the conventional algorithms, and its performance is close to the that of the enumerative algorithm.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.4
/
pp.1501-1518
/
2016
This paper presents an effective management of VM (Virtual Machine) for heterogeneous cloud using Common Deployment Model (CDM) brokering mechanism. The effective utilization of VM is achieved by means of task scheduling with VM placement technique. The placements of VM for the physical machine are analyzed with respect to execution time of the task. The idle time of the VMis utilized productively in order to improve the performance. The VMs are also scheduled to maintain the state of the current VM after the task completion. CDM based algorithm maintains two directories namely Active Directory (AD) and Passive Directory (PD). These directories maintain VM with proper configuration mapping of the physical machines to perform two operations namely VM migration and VM roll back. VM migration operation is performed from AD to PD whereas VM roll back operation is performed from PD to AD. The main objectives of the proposed algorithm is to manage the VM's idle time effectively and to maximize the utilization of resources at the data center. The VM placement and VM scheduling algorithms are analyzed in various dimensions of the cloud and the results are compared with iCanCloud model.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.6
/
pp.1877-1891
/
2022
As a part of cloud computing technology, algorithms for cloud task scheduling place an important influence on the area of cloud computing in data centers. In our earlier work, we proposed DeepEnergyJS, which was designed based on the original version of the policy gradient and reinforcement learning algorithm. We verified its effectiveness through simulation experiments. In this study, we used the Proximal Policy Optimization (PPO) algorithm to update DeepEnergyJS to DeepEnergyJSV2.0. First, we verify the convergence of the PPO algorithm on the dataset of Alibaba Cluster Data V2018. Then we contrast it with reinforcement learning algorithm in terms of convergence rate, converged value, and stability. The results indicate that PPO performed better in training and test data sets compared with reinforcement learning algorithm, as well as other general heuristic algorithms, such as First Fit, Random, and Tetris. DeepEnergyJSV2.0 achieves better energy efficiency than DeepEnergyJS by about 7.814%.
KIPS Transactions on Software and Data Engineering
/
v.12
no.9
/
pp.399-406
/
2023
Cloud computing has been evolved to support edge computing architecture that combines fog management layer with edge servers. The main reason why it is received much attention is low communication latency for real-time IoT applications. At the same time, various cloud task scheduling techniques based on artificial intelligence have been proposed. Artificial intelligence-based cloud task scheduling techniques show better performance in comparison to existing methods, but it has relatively high scheduling time. In this paper, we propose a deep learning-based dynamic scheduling with multi-agents supporting scalability in edge computing environments. The proposed method shows low scheduling time than previous artificial intelligence-based scheduling techniques. To show the effectiveness of the proposed method, we compare the performance between previous and proposed methods in a scalable experimental environment. The results show that our method supports real-time IoT applications with low scheduling time, and shows better performance in terms of the number of completed cloud tasks in a scalable experimental environment.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.11
/
pp.3565-3583
/
2022
The task scheduling problem has received a lot of attention in recent years as a crucial area for research in the cloud environment. However, due to the difference in objectives considered by service providers and users, it has become a major challenge to resolve the conflicting interests of service providers and users while both can still take into account their respective objectives. Therefore, the task scheduling problem as a bi-objective game problem is formulated first, and then a task scheduling model based on the bi-objective game (TSBOG) is constructed. In this model, energy consumption and resource utilization, which are of concern to the service provider, and cost and task completion rate, which are of concern to the user, are calculated simultaneously. Furthermore, a many-objective evolutionary algorithm based on a partitioned collaborative selection strategy (MaOEA-PCS) has been developed to solve the TSBOG. The MaOEA-PCS can find a balance between population convergence and diversity by partitioning the objective space and selecting the best converging individuals from each region into the next generation. To balance the players' multiple objectives, a crossover and mutation operator based on dynamic games is proposed and applied to MaPEA-PCS as a player's strategy update mechanism. Finally, through a series of experiments, not only the effectiveness of the model compared to a normal many-objective model is demonstrated, but also the performance of MaOEA-PCS and the validity of DGame.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.9
/
pp.3126-3145
/
2014
Cloud computing is a computing paradigm in which users can rent computing resources from service providers according to their requirements. A spot instance in cloud computing helps a user to obtain resources at a lower cost. However, a crucial weakness of spot instances is that the resources can be unreliable anytime due to the fluctuation of instance prices, resulting in increasing the failure time of users' job. In this paper, we propose a Genetic Algorithm (GA)-based workflow scheduling scheme that can find the optimal task size of each instance in a spot instance-based cloud computing environment without increasing users' budgets. Our scheme reduces total task execution time even if an out-of-bid situation occurs in an instance. The simulation results, based on a before-and-after GA comparison, reveal that our scheme achieves performance improvements in terms of reducing the task execution time on average by 7.06%. Additionally, the cost in our scheme is similar to that when GA is not applied. Therefore, our scheme can achieve better performance than the existing scheme, by optimizing the task size allocated to each available instance throughout the evolutionary process of GA.
Journal of information and communication convergence engineering
/
v.16
no.4
/
pp.264-270
/
2018
In our research study, we aim at optimizing multiple load in cloud, effective resource allocation and lesser response time for the job assigned. Using Hadoop on datacenter is the best and most efficient analytical service for any corporates. To provide effective and reliable performance analytical computing interface to the client, various cloud service providers host Hadoop clusters. The previous works done by many scholars were aimed at execution of workflows on Hadoop platform which also minimizes the cost of virtual machines and other computing resources. Earlier stochastic hill climbing technique was applied for single parameter and now we are working to optimize multiple parameters in the cloud data centers with proposed heuristic hill climbing. As many users try to priorities their job simultaneously in the cluster, resource optimized workflow scheduling technique should be very reliable to complete the task assigned before the deadlines and also to optimize the usage of the resources in cloud.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.9
/
pp.4103-4121
/
2018
Quality of Service (QoS) awareness is recognized as a key point for the success of Internet of Things (IOT).Realizing the full potential of the Internet of Things requires, a real-time task scheduling algorithm must be designed to meet the QoS need. In order to schedule tasks with diverse QoS requirements in cloud environment efficiently, we propose a task scheduling strategy based on dynamic priority and load balancing (DPLB) in this paper. The dynamic priority consisted of task value density and the urgency of the task execution, the priority is increased over time to insure that each task can be implemented in time. The scheduling decision variable is composed of time attractiveness considered earliest completion time (ECT) and load brightness considered load status information which by obtain from each virtual machine by topic-based publish/subscribe mechanism. Then sorting tasks by priority and first schedule the task with highest priority to the virtual machine in feasible VMs group which satisfy the QoS requirements of task with maximal. Finally, after this patch tasks are scheduled over, the task migration manager will start work to reduce the load balancing degree.The experimental results show that, compared with the Min-Min, Max-Min, WRR, GAs, and HBB-LB algorithm, the DPLB is more effective, it reduces the Makespan, balances the load of VMs, augments the success completed ratio of tasks before deadline and raises the profit of cloud service per second.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.7
/
pp.2952-2971
/
2016
Outsourcing jobs to a public cloud is a cost-effective way to address the problem of satisfying the peak resource demand when the local cloud has insufficient resources. In this paper, we studied the management of deadline-constrained bag-of-tasks jobs on hybrid clouds. We presented a binary nonlinear programming (BNP) problem to model the hybrid cloud management which minimizes rent cost from the public cloud while completes the jobs within their respective deadlines. To solve this BNP problem in polynomial time, we proposed a heuristic algorithm. The main idea is assigning the task closest to its deadline to current core until the core cannot finish any task within its deadline. When there is no available core, the algorithm adds an available physical machine (PM) with most capacity or rents a new virtual machine (VM) with highest cost-performance ratio. As there may be a workload imbalance between/among cores on a PM/VM after task assigning, we propose a task reassigning algorithm to balance them. Extensive experimental results show that our heuristic algorithm saves 16.2%-76% rent cost and improves 47.3%-182.8% resource utilizations satisfying deadline constraints, compared with first fit decreasing algorithm, and that our task reassigning algorithm improves the makespan of tasks up to 47.6%.
International Journal of Computer Science & Network Security
/
v.22
no.4
/
pp.310-328
/
2022
Internet of things (IoT) has emerged as the most popular technique that facilitates enhancing humans' quality of life. However, most time sensitive IoT applications require quick response time. So, processing these IoT applications in cloud servers may not be effective. Therefore, fog computing has emerged as a promising solution that addresses the problem of managing large data bandwidth requirements of devices and quick response time. This technology has resulted in processing a large amount of data near the data source compared to the cloud. However, efficient management of computing resources involving balancing workload, allocating resources, provisioning resources, and scheduling tasks is one primary consideration for effective computing-based solutions, specifically for time-sensitive applications. This paper provides a comprehensive review of the source management strategies considering resource limitations, heterogeneity, unpredicted traffic in the fog computing environment. It presents recent developments in the resource management field of the fog computing environment. It also presents significant management issues such as resource allocation, resource provisioning, resource scheduling, task offloading, etc. Related studies are compared indifferent mentions to provide promising directions of future research by fellow researchers in the field.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.