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Abstract 
 

Cloud computing is a computing paradigm in which users can rent computing resources from 

service providers according to their requirements. A spot instance in cloud computing helps a 

user to obtain resources at a lower cost. However, a crucial weakness of spot instances is that 

the resources can be unreliable anytime due to the fluctuation of instance prices, resulting in 

increasing the failure time of users’ job. In this paper, we propose a Genetic Algorithm 

(GA)-based workflow scheduling scheme that can find the optimal task size of each instance 

in a spot instance-based cloud computing environment without increasing users’ budgets. Our 

scheme reduces total task execution time even if an out-of-bid situation occurs in an instance. 

The simulation results, based on a before-and-after GA comparison, reveal that our scheme 

achieves performance improvements in terms of reducing the task execution time on average 

by 7.06%. Additionally, the cost in our scheme is similar to that when GA is not applied. 

Therefore, our scheme can achieve better performance than the existing scheme, by 

optimizing the task size allocated to each available instance throughout the evolutionary 

process of GA. 
 

 

Keywords: Cloud computing, Spot instances, Workflow, Price history, Fault tolerance, 

Genetic algorithm 
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1. Introduction 

In recent years, due to the increased interest in cloud computing, many cloud projects and 

commercial systems such as the Amazon Elastic Compute Cloud (EC2) [1], and FlexiScale [2] 

have been implemented. Cloud computing provides high utilization and high flexibility for 

managing computing resources. In addition, cloud computing services provide a high level of 

scalability of computing resources combined with Internet technology that are distributed 

among several customers [3, 4, 5]. In most cloud services, the concept of an instance unit is 

used to provide users with resources in a cost-efficient manner. Generally, instances are 

classified into three types: on-demand instances, reserved instances, and spot instances. 

On-demand instances allow a user to pay for computing capacity by the hour, with no 

long-term commitments. This frees users from the costs and complexities of planning, 

purchasing, and maintaining hardware, and transforms what are usually large fixed costs into 

much smaller variable costs [1]. Reserved instances allow a user to make a low, one-time 

payment to reserve instance capacity and further reduce the user’s cost. While in reserved 

instances a user pays a yearly fee and receives a discount on hourly rates, in on-demand 

instances a user pays one hourly rate [6]. On the other hand, spot instances allow customers to 

bid on unused Amazon EC2 capacity and run those instances for as long as their bid exceeds 

the current spot price. Based on the supply and demand of spot instances, the spot price is 

changed. Customers whose bid exceeds the spot price can gain access to the available spot 

instances. If the applications executed are time-flexible, spot instances can significantly 

decrease the Amazon EC2 costs [7]. Therefore, spot instances may incur lower costs while 

performing tasks than on-demand instances. 

Spot market-based cloud environment configures the spot instance. The environment 

affects the successful completion or failure of tasks depending on the changing spot prices. 

Because spot prices have a market structure and follow the law of demand and supply, cloud 

services in Amazon EC2 can provide a spot instance when a user’s bid is higher than the 

current spot price. Furthermore, a running instance stops when a user’s bid becomes less than 

or equal to the current spot price. After a running instance stops, it restarts when a user’s bid 

becomes greater than the current spot price [8]. 

Scientific applications, in particular, make the current common of workflow. However, spot 

instance-based cloud computing has variable performance, because the available execution 

time of spot instances depends on the spot price. The completion time for the same amount of 

a task varies according to the performance of an instance. In other words, the failure time of 

each instance differs according to the user’s bid and the performance in an instance. Thereby, 

we infer that the completion time of a task in an instance increases when a failure occurs. For 

efficient execution of tasks, we analyze the task and instance information from the price 

history data of spot instances, and estimate the task size and instance availability from the 

analyzed data. A workflow is created based on each available instance and the task size. 

However, the created workflow has a problem in that it does not consider the failure time of 

each instance. To solve this problem, we propose a scheme to change the task size of each 

instance using a Genetic Algorithm (GA). Our proposed scheduling scheme uses workflow 

mechanisms and GA to handle job execution. In our scheme, a user’s job is executed within 

selected instances and the user’s budget is stretched. 
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2. Related Works 

Two different environments in cloud computing have been considered in recent research 

studies: reliable environments (with on-demand instances [9, 10]) and unreliable 

environments (with spot instances [8, 11, 12, 12]). Our study falls into the latter category of 

cloud computing environments. 

Typically, studies on spot instances have mainly focused on performing tasks at low 

monetary costs. The spot instances in the Amazon EC2 offer cloud services to users at lower 

prices at the expense of reliability [1]. Cloud exchange [14] provides the actual price history of 

EC2 spot instances. There has been numerous studies on resource allocation [12, 13], fault 

tolerance [8, 11, 12, 15], workflow scheduling [16, 17], and the use of Genetic Algorithms [18, 

19, 20] for spot instances. 

In the field of resource allocation, Voorsluys et al. [12] provided a solution for running 

computation-intensive tasks in a pool of intermittent VMs. To mitigate potential unavailability 

periods, the study proposed a multifaceted fault-aware resource provisioning policy. 

Voorsluys et al’s solution employed price and runtime estimation mechanisms. The proposed 

strategy achieved cost savings and stricter adherence to deadlines. Zhang et al. [13] 

demonstrated how best to match customer demand in terms of both supply and price, and how 

to maximize provider revenue and customer satisfaction in terms of VM scheduling. Their 

model was designed to solve the problem of discrete-time optimal control. It achieved higher 

revenues than static allocation strategies and minimized the average request waiting time. Our 

work differs from [12] and [13] in that we focus on reducing the rollback time after a task 

failure, achieving cost savings and reducing the total execution time. 

In the fault tolerance category, two similar studies ([11] and [8]) proposed enforcing fault 

tolerance in cloud computing with spot instances. Based on the actual price history of EC2 

spot instances, these studies compared several adaptive checkpointing schemes in terms of 

monetary costs and job execution time. Goiri et al. [10] evaluated three fault tolerance 

schemes - checkpointing, migration, and job duplication - assuming fixed communication 

costs. The migration-based scheme showed a better performance than the checkpointing or the 

job duplication-based scheme. Voorsluys et al. [12] also analyzed and evaluated the impact of 

checkpointing and migration on fault tolerance using spot instances. Our paper differs from [8, 

10, 11, 12] in that we utilize two thresholds for fault tolerance. 

A workflow is a model that represents complex problems with structures such as Directed 

Acyclic Graphs (DAG). Workflow scheduling is a kind of global task scheduling as it focuses 

on mapping and managing the execution of interdependent tasks on shared resources. The 

existing workflow scheduling methods have limited scalability and are based on centralized 

scheduling algorithms. Consequently, these methods are not suitable for spot instance-based 

cloud computing. In spot instances, the available time and instance costs have to be considered 

for job execution. Fully decentralized workflow scheduling systems use a chemistry-inspired 

model to determine the instance in a community cloud platform [16]. The throughput 

maximization strategy is designed for transaction-intensive workflow scheduling that does not 

support multiple workflows [17]. Our proposed scheduling scheme guarantees an equal task 

distribution across available instances in spot instance-based cloud computing.  

A GA is a popular search technique that uses the concept of evolution in the natural world to 

solve optimization problems [18, 19, 20]. It has been used for cloud scheduling in various 

studies [21, 22, 23]. The synapsing variable-length crossover (SVLC) algorithm provides a 
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biologically inspired method for performing meaningful crossover between variable-length 

genomes [18]. However, traditional GAs [19, 20] operate on a population of fixed-length 

genomes. In additional, those have the problem to relate a set of potential solutions. Our GA 

utilizes the crossover to adopt the variable-length. In [21], the scheduling of VM resources in a 

load balanced manner was based on GA. In a private cloud environment, a Modified Genetic 

algorithm (MGA) was utilized for task scheduling with a combination of Shortest Cloudlet to 

Fastest Processor (SCFP) and Longest Cloudlet to Fastest Processor (LFCP) methods [22]. In 

this study, authors also used a meta-heuristic GA as an optimization method. Fatma et al. [23] 

adapted task scheduling to use two fitness functions. The first fitness function is concerned 

with minimizing the total execution time, and the second is concerned with the load balance. 

However, the existing studies did not consider the failure time of instances that makes task 

execution stop. Our GA-based scheduling method considers the failure time of instances, the 

task execution time, and task execution costs. 

3. System Architecture 
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Fig. 1. Mapping between workflows and instances 

 

Our proposed scheme expands on our previous work [24] and includes a workflow 

scheduling algorithm. We make workflow tasks based on available instances and propose how 

to handle tasks. Each available instance operates workflow tasks and uses checkpointing 

scheme in Section 3.3. Fig. 1 presents the mapping relationship between workflows and 

instances, and illustrates the roles of the instance information manager, the workflow manager, 

and the resource scheduler. The instance information manager obtains the information 

required for job allocation and resource management. This information includes the VM 

specifications for each instance and execution related information such as the execution costs, 

execution completion time, and failure time. The execution-related information is calculated 

by using the selected VM and is based on the spot history. The workflow manager and 

resource scheduler extract the necessary execution-related information from the instance 

information manager. First, the workflow manager generates the workflow for the request job. 

The generated workflow determines the task size according to the VM performance, the 

execution time and costs, and the failure time in the selected instance. Second, the resource 

scheduler manages the resource and allocates the task to handle the job. Resource and task 

managements perform reallocation when the resource cannot get the mapping-related 

information for the task, or when the task has a fault during execution.  

In the above model, our proposed scheme uses the workflow in spot instances to minimize 

job processing time within the user’s budget. The task size is determined by evaluating the 
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availability and performance of each instance in order to minimize the job processing time. 

The available time is estimated by calculating the execution time and cost using the price 

history of spot instances. This helps to improve the performance and stability of task 

processing. The estimated time data is used in assigning the amount of task to each instance. 

Our proposed scheme reduces out-of-bid situations and improves the job execution time. 

However, the total cost is higher than the cost when workflow scheduling is not used. 

3.1 Instance types 

An instance means a VM rented by a cloud user. Instances are classified into two types: 

on-demand instances and spot instances. In on-demand instances, users can use VM resources 

after paying a fixed cost on an hourly basis. On the other hand, when using spot instances, 

users can use VM resources only when the price of the instances is lower than their bid. The 

difference between the two instance types is as follows. In on-demand instances, a failure does 

not occur during task execution, but the cost is comparatively high. In contrast, the cost of spot 

instances is lower than that of on-demand instances. However, in the case of spot instances, 

there is a risk of task failures when the price of the instance becomes higher than the user’s bid. 

 

Fig. 2. Price history of EC2's spot instances for c1-xlarge 

 

Amazon allows users to bid on unused EC2 capacity that includes 42 types of spot instances 

[1]. Their prices, which are referred to as spot prices, change dynamically based on the supply 

and demand. Fig. 2 shows an example of spot price fluctuation during seven days in December 

2010 for c1-xlarge (High-CPU Spot Instances - Extra Large) [14]. Our proposed system model 

is based on the characteristics of Amazon EC2's spot instances, which are as follows: 

 The system provides a spot instance when a user bid is higher than the current price. 

 The system immediately stops the spot instance, without giving any notice, when a user 

bid becomes less than or equal to the current price. We refer to this situation as an 

out-of-bid event or a failure. 

 The system does not charge for the last partial hour when the system stops the spot 

instance. 

 The system charges for the last partial hour when the user voluntarily terminates the spot 

instance. 

 The system provides the spot price history. 

3.2 Estimated Interval 

Our checkpointing operation is performed by analyzing the price variations during selected 

time intervals in the past. We estimate the job execution time and cost from the analyzed data. 

These estimations are combined with the failure probability in order to calculate the thresholds 
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for the checkpointing operation. The proper estimation of the execution time and cost is 

crucial for maintaining the credibility of service providers with customers.  

In this paper, we introduce a terminology referred to as Estimated Interval (EI). Fig. 3 

shows an illustrative definition of the EI. The detailed definition is as follows: 

 Pure task time: The time taken to execute a task on a selected instance when there are no 

failures. 

 Past pure task time: The sum of the time taken for task execution on the selected instance 

in the past, excluding failure times. The time information is extracted from the price 

history. 

 Past failure time: The sum of failure times for task execution in the past. A failure occurs 

when the current user bid goes below the past spot price. 

 Estimated interval (EI): The sum of the past pure task time and the past failure time. 

 Expected cost: The average of costs charged for task execution in EIs. 
 

 
Fig. 3. EI illustration 

 

3.3 Our Proposed Checkpointing Scheme 

 
Fig. 4. Our proposed checkpointing scheme 

 

Fig. 4 illustrates our proposed checkpointing scheme [24]. This scheme performs 

checkpointing using two kinds of thresholds - price threshold and time threshold - depending 

on the expected execution time based on the price history. Let startt  and endt  denote a start 

point and an end point in the expected execution time, respectively. Based on startt  and endt , we 

obtain the price threshold ( PriceTh ) and the time threshold (
ipTimeTh ), which are used as 
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where 
bidUser  represents the bid suggested by the user. 

minP  is the available minimum price 

that the function PriceMin  extracts in the period between 
startt  and 

endt . This is given as 

follows: 

min ( , )start endP PriceMin t t      (2) 

The time threshold of the price 
iP , 

ipTimeTh , can be calculated as 

( , ) (1 )
i i ip P start end pTimeTh AvgTime t t F       (3) 

where 
ipF is the failure probability of price

iP , and ( , )
iP start endAvgTime t t  represents the average 

execution time of 
iP  in the period between 

startt  and 
endt . 

4. Genetic Algorithm Based Job Scheduling 

The main goal of our scheduling method is to minimize the execution time and the cost of 

running applications. Our scheduling method is based on the genetic algorithm (GA) that is a 

well-known and robust search technique for solving large-scale optimization problems. The 

GA consists of the following five steps: 

(1) Randomly generate an initial population. 

(2) Generate offspring using genetic operators such as crossover and mutation. 

(3) Rank chromosomes using the defined fitness function. 

(4) Update and evaluate the best-ranked chromosomes based on the selection. 

(5) Repeat steps 2–4 if the number of pre-determined constraints cannot satisfy the processing 

of GA generation. 

4.1 Initial Population 

Initially, all chromosomes in a population are randomly constructed without any knowledge 

of experts. Before describing the representation of a chromosome, let us consider the 

definitions of both instances and jobs that each chromosome consists.  

 N : the number of instance types; 

 M : the number of jobs; 

 
1 2{ , , , }NI I I I : a set of instances; 

 iI : an instance of type i (1 )i N  ; 

 
1 2{ , , , }MJ J J J : a set of jobs; 

 Lj : the number of tasks in j-th job; 

 ,1 ,2 ,{ , , , }
jj j j j LJ t t t : a set of tasks in j-th job (1 )j M  ; 

 
,j kt : k-th task in j-th job (1 )jk L  . 

 

To avoid the complexity of task allocations to instances, we assume two constraints as 

follows: one is that all tasks have an identical size. The other is that there is no sequence for 

task execution on an instance. Under this assumption, we construct the structure of 
two-dimensional chromosomes. Fig. 5 illustrates the two-dimensional chromosome 

represented as a grid with N rows and M columns. In this figure, a gene ( , )i jI Jg  means the i-th 

row and the j-th column  (1 i N  ,1 j M  ) in the chromosome and is interpreted as follows. 

 ( , )

  numbers of tasks in are allocated to the instance ,  if 1

  –  numbers of tasks in are allocated to the instance , if 1i j

j i

I J

j i

l J I i
g

l k J I i


 


  (4) 
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where k and l respectively represent the values of the adjacent two genes,
1( , )i jI Jg


and ( , )i jI Jg  

(1 )jk l L   . 

To meet the requirements for task execution, n instances satisfying the condition in Eq. (5) 

are chosen when allocating tasks to initial instances. Our task distribution method determines 

the task size in order to allocate a task to a selected instance. Based on a compute-unit and an 

available state, the task size of an instance 
iI  for 

jJ  ( j

i

J

IT ) is calculated as 

1

1

( )

i ij j

i

ii i

I IJ J

I request baselineN

II Ii

U A
T T U

UU A


 
    
  

      (5) 

where jJ

requestT  represents the total size of tasks in Jj required for executing a user request. In an 

instance Ii, 
iIU  and 

iIA  represent the compute-unit (the product of CPU and cores) and the 

available state, respectively. The available state 
iIA  can be either 0 (unavailable) or 1 

(available).  The 
baselineU  represents the compute-unit of the selected instance to request the 

user. The task size is decided by the compute-unit rate based on the baseline. 

Each gene 
( , )i jI Jg  shows the number of task sequences according to the compute-unit of the 

selected instance and the variation of task size. The task sequences are related to the task size. 

Eq. (6) represents the number of task sequences in gene 
( , )i jI Jg . 

1 1

( , )

( , )
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( ) ', if 1
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i j j
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I J J

I J I

T i
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g T i
 
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 
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                  (6) 

The task size of each instance in the chromosome adjusts based on Eq. (7). The variation of 

task size j

i

J

I  is randomly set by Eq. (8). 

( ) 'j j j

i i i

J J J

I I IT T       (7) 

[ , ]j j j

i i i

J J J

I I IT T          (8) 

When an initial population is constructed, all genes in the chromosome are randomly set to an 

integer value adopting Eq. (6).  
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Fig. 5. Chromosome representation 

 

4.2 Fitness Function 

The fitness function defines the criterion for ranking potential hypotheses and for 

probabilistically selecting them for inclusion in the next generation of the population. 

Additionally, the fitness function is the criterion for determining the quality of chromosomes 
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in the population. It directly reflects the performance of task distribution. In our paper, the 

standard deviation is used as the fitness function to evaluate the performance of chromosomes. 

Based on the standard deviation for each chromosome Ck, our fitness function ( )
kCf   is 

defined as follows. 

2

1
( ) 1 1 ( ( ) ) /

k i k

N

C I Ci
f EET Avg N



    
 

    (9) 

 

In Eq. (9), 
iIEET  is the total estimated execution time of the instance 

iI . 
kCAvg  is the average 

of total estimated execution time and can be calculated as 
 

1 ,1i

k

N

Ii

C

EET
Avg k P

N

  


    (10) 

 

where, P represents population size. 

4.3 Selection 

The fittest chromosomes have higher probability to be selected for the next generation. We 

use two selection mechanisms. One is the elitism method that forces the GA to retain some 

number of the best chromosomes at each generation. The other is a roulette wheel method. 

Given the population size P, P - 1 chromosomes in a new population are made by the roulette 

wheel method. The elitism method is applied to produce the remaining one chromosome, 

which is the best of chromosomes in population pool. 

4.4 Genetic Operations (Crossover, Mutation, and Reproduction) 

The successive generation in GA is determined by a set of operators that recombine and 

mutate selected members of the current population. The crossover operator produces two new 

offsprings from two parents, leading to improving the fitness of chromosomes in the current 

population. We adapt two-point crossover method to the spot instance environment. In the 

typical two-point crossover, a pair of chromosomes is selected according to the crossover 

probability pc, and two crossover points are randomly selected. Fig. 6 illustrates an example of 

two-point crossover operation in our genetic algorithm. 
 

J1 J2 J3 J4 J5 J6 J7

I1 5 3 5 20 10 4 11

I2 10 6 10 30 30 9 22

J1 J2 J3 J4 J5 J6 J7

I1 6 2 8 10 13 7 17

I2 10 6 10 20 30 9 22

crossover points

J1 J2 J3 J4 J5 J6 J7

I1 5 3 8 10 13 4 11

I2 10 6 10 20 30 9 22

J1 J2 J3 J4 J5 J6 J7

I1 6 2 5 20 10 7 17

I2 10 6 10 30 30 9 22

Before crossover After crossover

  
 

  
 

  

  

 
Fig. 6. Example of two-point crossover 
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The mutation operation changes the value of genes in the chromosome according to the 

mutation probability pm. Our mutation operation is depicted in Fig. 7. The number of mutation 

points is randomly selected by row. After selecting the number of rows, the number of column 

mutations is randomly selected in each row. After the mutation operation is applied, the gene 
'

( , )i jI Jg  is calculated by 

( , ) 1
'

( , )

( , ) 2

, if

, if

i j k i

i j

i j k i

I J C I

I J

I J C I

g r Avg EET
g

g r Avg EET

 
 

 

    (11) 

 

where ( , )i jI Jg  is a previous gene in the chromosome Ck. 1r  and 
2r  represent the variation to the 

gene ( , )i jI Jg . There are two cases. In the first case (i.e. 
1r ), if the 

iIEET of the instance Ii is given 

less than the average of EET of available instances, the gene 
( , )i jI Jg  is changed into the new 

gene 
'

( , )i jI Jg  greater than the current value. The 
1r  is extracted from the value ranging between 

( , )i jI Jg  and 
1( , )i jI Jg


. In the second case (i.e. 
2r ), if the 

iIEET of the instance Ii is greater than the 

average of EET of available instances, the gene ( , )i jI Jg  is changed into the new gene value less 

than the current value. The 
2r  is extracted from the value ranging between 

1( , )i jI Jg


 and ( , )i jI Jg . 

The above-mentioned two cases are applied to only instances between I1 and IN-1. The genes 

of last instance (
( , )N jI Jg ) can not be changed, because they have the final task number in a job; 

i.e, the mutation operation is not applied to these genes. 
 

J1 J2 J3 J4 J5 J6 J7

I1 5 3 5 20 2 4 11

I2 10 6 10 28 30 9 22

I3 15 9 20 30 32 12 33

I4 18 20 30 35 40 15 44

mutation points

Before mutation After mutation

  J1 J2 J3 J4 J5 J6 J7

I1 5 3 5 20 10 4 11

I2 7 5 10 23 30 9 20

I3 15 14 20 30 35 12 33

I4 18 20 30 35 40 15 44

  
 

 
Fig. 7. Example of mutation 

 

The reproduction operation is used to obtain the modifed chromosome for the next 

generation. The reproducted chromosomes selects chromosomes to consider the low ranking 

of the fitness according to the reproduction probability pr. Each chromosome calculates the 

ranking of the fitness based on Eq. (9). The selected chromosome deletes current chromosome 

and than reproduces new chromosome. The selected chromosome adjusts the task size based 

on the elitism chromosome of the selection phase. The task size of each instance is determined 

according to the standard deviation of each instance in the elitism chromosome. 

4.5 GA-based Workflow Scheduling (GAWS) Algorithm 

Our GA-based Workflow Scheduling (GAWS) algorithm is described in Fig. 8. The 

Task_flag represents the occurrence of a task execution, and its initial value is false. When the 

task execution is normal (i.e., Task_flag is true), the scheduler performs a workflow operation 
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(lines 3-27). The GA_flag represents the execution of GA, and its initial value is true; Lines 

17-24 are initial population, fitness function, and genetic operations of GA, respectively. Lines 

28-35 show the workflow function. 
 

 

Fig. 8. GAWS algorithm 
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/*Initialization */ 

Boolean Task_flag = false // a flag representing occurrence of a task execution  

Boolean GA_flag = true // a flag representing occurrence of GA  

while (search user’s job) do 

if  (require job execution by the user) then 

take the cost and total execution time by the user; 

Task_flag = true; 

end if 

if (job_flag) then 

forall instance Ii  ∈ all Instances do // search available instances 

retrieve an instance information to meet the user’s requirement in an instance Ii; 

analyze an available execution time and cost in an instance Ii; 

store the analyzed available instance to a queueinstance; 

end forall 

forall instance Ii  ∈ queueinstance do // operate an initial population 

the task size of an instance Ii is calculated as Eq. (6); 

end forall 

/* perform GA operation */ 

while(GA_flag) do 

/* perform fitness functions */ 

calculate the standard deviation of each chromosome 
kC , 

kC as Eq. (9); 

/*  perform  selection (elitism and roulette method) */ 
chose best chromosome at each generation; 

other chromosomes calculate the probability to select genetic operations; 

  /*  perform  crossover, mutation, and  reproduction based on fitness functions */ 
perform  two-point crossover to select a pair of chromosomes as the crossover  
probability

cp ; 

switches the value to select genes with the mutation probability 
mp ; 

perform  reproduction  as the reproduction  probability 
rp ; 

end while  

invoke workflow ( ); 

end if 

end while 

Thread_Function workflow ( ) begin 

while (task execution does not finish) do 

calculate on priority list for the priority job allocation; 

forall instance  Ii ∈ queueinstance do 

allocate tasks to the instance Ii ;  

end forall 

end while 

end  Thread_Function 
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5. Performance Evaluation 

In this section, we evaluate and analyze the performance of the proposed scheme through 

simulations. The performance comparision for the scheme is also presented. 

5.1 Simulation Environment 

Before performing our simulations, we describe spot-instance environments and the 

simulation parameters used in our GA. Our simulations were conducted using the history data 
obtained from Amazon EC2 spot instances [14]. The history data before 10-01-2010 was used 

to extract the expected execution time and failure occurrence probability for our checkpointing 

scheme. The applicability of our scheme was tested using the history data after 10-01-2010. 
 

Table 1. Resource type information 
Instance type 

name 

Compute 

unit 

Virtual 

cores 

Spot price 

min 

Spot price 

average 

Spot price 

max 

m1.small 

(Standard) 

1 EC2 1 core 

(1 EC2) 

$0.038 $0.040 $0.053 

m1.large 

(Standard) 

4 EC2 2 cores 

(2 EC2) 

$0.152 $0.160 $0.168 

m1,xlarge 

(Standard) 

8 EC2 4 cores 

(2 EC2) 

$0.076 $0.080 $0.084 

c1.medium 

(High-CPU) 

5 EC2 2 cores 

(2.5 EC2) 

$0.304 $0.323 $1.52 

c1.xlarge 

(High-CPU) 

20 EC2 8 cores 

(2.5 EC2) 

$0.532 $0.561 $0.588 

m2.xlarge 

(High-Memory) 

6.5 EC2 2 cores 

(3.25 EC2) 

$0.532 $0.561 $0.588 

m2.2xlarge 

(High-Memory) 

13 EC2 4 cores 

(3.25 EC2) 

$0.532 $0.561 $0.588 

m2.4xlarge 

(High-Memory) 

26 EC2 8 cores 

(3.25 EC2) 

$1.064 $1.22 $1.176 

 

Table 2. Parameters and values for simulation 

Simulation 

parameter 

Task time 

interval 

Baseline Distribution 

time 

Merge 

time 

Checkpoint 

time 

Recovery 

time 

Value 43,200(s) m1.xlarge 300(s) 300(s) 300(s) 300(s) 

 
Table 3. Parameters and values for GA 

Simulation parameter Value 

Population size 50 

Number of generations 100 

Crossover probability (pc) 0.3 

Mutation probability (pm) 0.1 

Reproduction probability (pr) 0.3 

 

In the simulations, one type of spot instance was applied to demonstrate the effect of task 

execution time analysis on the performance. Table 1 shows the various resource types used in 

Amazon EC2. In this table, resource types are comprised of different instance types. First, 

standard instances offer a basic resource type. Second, high-CPU instances offer more 
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compute units than other resources, and can be used for computation-intensive applications. 

Finally, high-memory instances offer more memory capacity than other resources, and can be 

used for high-throughput applications such as databases and memory caching applications. In 

the simulation environments, we compared the performance of our proposed scheme with that 

of the existing schemes without considering task distribution based on the task execution time. 
Table 1 shows the information related to resource types in each instance, and Table 2 

shows the parameters and values for our simulation. Table 3 shows the parameters and values 

for our genetic algorithm. The spot price information was extracted from the spot history data 

from 11-30-2009 to 01-23-2011. The user’s bid was taken as the average of the spot prices 

from the spot history data. Using Eq. (5), the task size was decided by the compute-unit rate 

based on the baseline m1.xlarge.  

5.2 Effect of GA Analysis 
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Fig. 9. Size variations in requested tasks 
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Fig. 10. Fitness curve 

 

In this section, we show the size variations of requested task and the fitness variation 

according to GA. Fig. 9 shows the size variations of requested tasks in each instance before 

and after using GA. In this figure, “B” and “A” denote the before and after GA, respectively, 
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and each instance type (m1.small, m1.large, etc.) indicates the task size allocated to each 

instance among the requested tasks of users. As shown in Fig. 9, when GA is applied, the task 

size is varied for each instance. This variation directly relates to the failure time of each 

instance; i.e, it is because more tasks are allocated to instances with low failure time by the 

evolutionary process of GA.  

 Fig. 10 shows the fitness curve of the best chromosome at each generation when GA is 

applied in case that the task size is 259,200. In this figure, we can observe that the value of 

fitness becomes higher as the generation increases. Therefore, we can see that our genetic 

algorithm-based scheme can sufficiently find the optimum solution. 
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Fig. 11. Comparison with and without crossover operation  

 

Fig. 11 shows the performance comparison between with and without crossover operation. 

In this figure, “Without” and “With” denote without and with the crossover operation, 

respectively. Except for the crossover operation, the remaining operations such as initial 

population, fitness functions, mutation, and reproduction, are the same as in the previous 

simulation. As we can see in this figure, the total execution time is reduced by an average of 

3.08% with crossover operation compared to without crossover operation. We can see from 

the result of this figure that crossover operation can improve more performance rather than 

without crossover operation. 

5.3 Effect of the Estimated Execution Analysis 

In this simulation, we examined the performance of the estimated execution analysis 

according to the task size before and after GA. Figs. 12, 13, 14, and 15 show the total 

estimated execution time, estimated cost, estimated failure time, estimated rollback time, 

respectively. TotalT is the sum of the estimated execution time in each instance, task 

distribution time, and task merge time. TotalC denotes the sum of estimated costs for task 

execution in each instance. Fig. 12 shows the total estimated execution time according to the 

task size before and after GA, respectively. After GA was applied, the total estimated 

execution time was reduced by an average of 33.59%. The total estimated execution times 

before and after GA were different because the instance failures occurred at different times.  

Fig. 13 shows the estimated failure times before and after GA, respectively. The estimated 

failure time of all instances was reduced by an average of 15.45% after applying GA as 

compared to when GA was not applied. In Fig. 14, the estimated rollback time after GA 
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showed an average performance improvement of 19.61% when compared to the rollback time 

before GA. The rollback time is calculated from a failure point to the last checkpoint time.  Fig. 

15 shows the estimated cost before and after applying GA, respectively. The cost after GA was 

decreased by an average of $0.12 as compared to the cost before GA. The difference between 

costs before and after applying GA is a little due to handling the equal task size. From the 

above results, we observe that the estimated execution times and failure times after applying 

GA were reduced as compared to before GA. Moreover, the costs were similar. The actual 

execution times and costs were compared based on above information. The improved results is 

had the reallocated task size according to GA. Because, our proposed GA is obtained relatively 

low the standard deviation about the estimated execution time than the standard deviation 

without GA. 
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Fig. 12. Total estimated execution time 
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Fig. 13. Estimated failure time 
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Fig. 14. Estimated rollback time 
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Fig. 15. Estimated costs 

 

5.4 Effect of the Execution Analysis 

In this simulation, we examined the performance of the execution analysis according to the 

task size before and after GA. Figs. 16, 17, 18, and 19 show the execution results of the actual 

data based on the estimated data, before and after GA. In the figures, TotalT denotes the total 

time taken for the distribution and merging of tasks. TotalC denotes the sum of costs of task 

execution in each instance. Fig. 16 shows that the total execution time is reduced by an 

average of 7.06% after GA as compared to before GA. Fig. 17 shows that the total costs after 

GA decreased the average by $0.17 when compared to the cost before GA. Fig. 18 shows that 

the failure time after GA was increased on average by 13.93% as compared to before GA. In 

Fig. 19, the rollback time after GA showed an average performance improvement of 6.52% 

when compared to the rollback time before GA. Different fluctuation of spot price contributes 

to difference between estimation and actual performances. 
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Fig. 16. Total execution time in task distribution 
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Fig. 17. Costs in task distribution 
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Fig. 18. Failure time in task distribution 
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Fig. 19. Rollback time in task distribution 

 

6. Conclusion 

In this paper, we proposed a GA-based workflow scheduling technique for task distribution 

in unreliable cloud computing environments. In our environment, the resources can be 

unreliable anytime due to the fluctuation of instance prices, resulting in increasing the failure 

time of users’ job. In order to solve the problem, we proposed GA-based workflow scheduling 

technique. The scheme proposed in this study reduced the failure time and the rollback time. 

The rollback time in our scheme was less than that of the existing scheme (without GA) 

because our scheme adaptively performs task distribution according to the estimated execution 

time of available instances. The simulation results showed that the execution time in our 

scheme was improved on average by 7.06% after GA as compared to before GA. Additionally, 

the failure time after applying GA was reduced on average by 6.52% as compared to before 

GA. Therefore, our scheduling method achieved minimizing the execution time and the cost of 

running applications. In future, we plan to expand our environment with an efficient GA 

operation that takes into consideration the current state of available instances. 
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