
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 9, Sep. 2014 3126

Copyright ⓒ 2014 KSII

http://dx.doi.org/10.3837/tiis.2014.09.010

A Workflow Scheduling Technique Using
Genetic Algorithm in Spot Instance-Based

Cloud

Daeyong Jung
1
, Taeweon Suh

1
, Heonchang Yu

1
 and JoonMin Gil

2*
1 Dept. of Computer Science Education, Korea University

Seoul, Korea

[e-mail: {karat, suhtw, yuhc}@korea.ac.kr]
2 School of Information Technology Engineering, Catholic University of Daegu

Daegu, Korea

 [e-mail: jmgil@cu.ac.kr]

*Corresponding author: JoonMin Gil

Received December 2, 2013; revised May 10, 2014; revised July 9, 2014; accepted August 19, 2014;

published September 30, 2014

Abstract

Cloud computing is a computing paradigm in which users can rent computing resources from

service providers according to their requirements. A spot instance in cloud computing helps a

user to obtain resources at a lower cost. However, a crucial weakness of spot instances is that

the resources can be unreliable anytime due to the fluctuation of instance prices, resulting in

increasing the failure time of users’ job. In this paper, we propose a Genetic Algorithm

(GA)-based workflow scheduling scheme that can find the optimal task size of each instance

in a spot instance-based cloud computing environment without increasing users’ budgets. Our

scheme reduces total task execution time even if an out-of-bid situation occurs in an instance.

The simulation results, based on a before-and-after GA comparison, reveal that our scheme

achieves performance improvements in terms of reducing the task execution time on average

by 7.06%. Additionally, the cost in our scheme is similar to that when GA is not applied.

Therefore, our scheme can achieve better performance than the existing scheme, by

optimizing the task size allocated to each available instance throughout the evolutionary

process of GA.

Keywords: Cloud computing, Spot instances, Workflow, Price history, Fault tolerance,

Genetic algorithm

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 9, September 2014 3127

1. Introduction

In recent years, due to the increased interest in cloud computing, many cloud projects and

commercial systems such as the Amazon Elastic Compute Cloud (EC2) [1], and FlexiScale [2]

have been implemented. Cloud computing provides high utilization and high flexibility for

managing computing resources. In addition, cloud computing services provide a high level of

scalability of computing resources combined with Internet technology that are distributed

among several customers [3, 4, 5]. In most cloud services, the concept of an instance unit is

used to provide users with resources in a cost-efficient manner. Generally, instances are

classified into three types: on-demand instances, reserved instances, and spot instances.

On-demand instances allow a user to pay for computing capacity by the hour, with no

long-term commitments. This frees users from the costs and complexities of planning,

purchasing, and maintaining hardware, and transforms what are usually large fixed costs into

much smaller variable costs [1]. Reserved instances allow a user to make a low, one-time

payment to reserve instance capacity and further reduce the user’s cost. While in reserved

instances a user pays a yearly fee and receives a discount on hourly rates, in on-demand

instances a user pays one hourly rate [6]. On the other hand, spot instances allow customers to

bid on unused Amazon EC2 capacity and run those instances for as long as their bid exceeds

the current spot price. Based on the supply and demand of spot instances, the spot price is

changed. Customers whose bid exceeds the spot price can gain access to the available spot

instances. If the applications executed are time-flexible, spot instances can significantly

decrease the Amazon EC2 costs [7]. Therefore, spot instances may incur lower costs while

performing tasks than on-demand instances.

Spot market-based cloud environment configures the spot instance. The environment

affects the successful completion or failure of tasks depending on the changing spot prices.

Because spot prices have a market structure and follow the law of demand and supply, cloud

services in Amazon EC2 can provide a spot instance when a user’s bid is higher than the

current spot price. Furthermore, a running instance stops when a user’s bid becomes less than

or equal to the current spot price. After a running instance stops, it restarts when a user’s bid

becomes greater than the current spot price [8].

Scientific applications, in particular, make the current common of workflow. However, spot

instance-based cloud computing has variable performance, because the available execution

time of spot instances depends on the spot price. The completion time for the same amount of

a task varies according to the performance of an instance. In other words, the failure time of

each instance differs according to the user’s bid and the performance in an instance. Thereby,

we infer that the completion time of a task in an instance increases when a failure occurs. For

efficient execution of tasks, we analyze the task and instance information from the price

history data of spot instances, and estimate the task size and instance availability from the

analyzed data. A workflow is created based on each available instance and the task size.

However, the created workflow has a problem in that it does not consider the failure time of

each instance. To solve this problem, we propose a scheme to change the task size of each

instance using a Genetic Algorithm (GA). Our proposed scheduling scheme uses workflow

mechanisms and GA to handle job execution. In our scheme, a user’s job is executed within

selected instances and the user’s budget is stretched.

3128 D. Jung et al.: A Workflow Scheduling Technique Using Genetic Algorithm in Spot Instance-Based Cloud

2. Related Works

Two different environments in cloud computing have been considered in recent research

studies: reliable environments (with on-demand instances [9, 10]) and unreliable

environments (with spot instances [8, 11, 12, 12]). Our study falls into the latter category of

cloud computing environments.

Typically, studies on spot instances have mainly focused on performing tasks at low

monetary costs. The spot instances in the Amazon EC2 offer cloud services to users at lower

prices at the expense of reliability [1]. Cloud exchange [14] provides the actual price history of

EC2 spot instances. There has been numerous studies on resource allocation [12, 13], fault

tolerance [8, 11, 12, 15], workflow scheduling [16, 17], and the use of Genetic Algorithms [18,

19, 20] for spot instances.

In the field of resource allocation, Voorsluys et al. [12] provided a solution for running

computation-intensive tasks in a pool of intermittent VMs. To mitigate potential unavailability

periods, the study proposed a multifaceted fault-aware resource provisioning policy.

Voorsluys et al’s solution employed price and runtime estimation mechanisms. The proposed

strategy achieved cost savings and stricter adherence to deadlines. Zhang et al. [13]

demonstrated how best to match customer demand in terms of both supply and price, and how

to maximize provider revenue and customer satisfaction in terms of VM scheduling. Their

model was designed to solve the problem of discrete-time optimal control. It achieved higher

revenues than static allocation strategies and minimized the average request waiting time. Our

work differs from [12] and [13] in that we focus on reducing the rollback time after a task

failure, achieving cost savings and reducing the total execution time.

In the fault tolerance category, two similar studies ([11] and [8]) proposed enforcing fault

tolerance in cloud computing with spot instances. Based on the actual price history of EC2

spot instances, these studies compared several adaptive checkpointing schemes in terms of

monetary costs and job execution time. Goiri et al. [10] evaluated three fault tolerance

schemes - checkpointing, migration, and job duplication - assuming fixed communication

costs. The migration-based scheme showed a better performance than the checkpointing or the

job duplication-based scheme. Voorsluys et al. [12] also analyzed and evaluated the impact of

checkpointing and migration on fault tolerance using spot instances. Our paper differs from [8,

10, 11, 12] in that we utilize two thresholds for fault tolerance.

A workflow is a model that represents complex problems with structures such as Directed

Acyclic Graphs (DAG). Workflow scheduling is a kind of global task scheduling as it focuses

on mapping and managing the execution of interdependent tasks on shared resources. The

existing workflow scheduling methods have limited scalability and are based on centralized

scheduling algorithms. Consequently, these methods are not suitable for spot instance-based

cloud computing. In spot instances, the available time and instance costs have to be considered

for job execution. Fully decentralized workflow scheduling systems use a chemistry-inspired

model to determine the instance in a community cloud platform [16]. The throughput

maximization strategy is designed for transaction-intensive workflow scheduling that does not

support multiple workflows [17]. Our proposed scheduling scheme guarantees an equal task

distribution across available instances in spot instance-based cloud computing.

A GA is a popular search technique that uses the concept of evolution in the natural world to

solve optimization problems [18, 19, 20]. It has been used for cloud scheduling in various

studies [21, 22, 23]. The synapsing variable-length crossover (SVLC) algorithm provides a

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 9, September 2014 3129

biologically inspired method for performing meaningful crossover between variable-length

genomes [18]. However, traditional GAs [19, 20] operate on a population of fixed-length

genomes. In additional, those have the problem to relate a set of potential solutions. Our GA

utilizes the crossover to adopt the variable-length. In [21], the scheduling of VM resources in a

load balanced manner was based on GA. In a private cloud environment, a Modified Genetic

algorithm (MGA) was utilized for task scheduling with a combination of Shortest Cloudlet to

Fastest Processor (SCFP) and Longest Cloudlet to Fastest Processor (LFCP) methods [22]. In

this study, authors also used a meta-heuristic GA as an optimization method. Fatma et al. [23]

adapted task scheduling to use two fitness functions. The first fitness function is concerned

with minimizing the total execution time, and the second is concerned with the load balance.

However, the existing studies did not consider the failure time of instances that makes task

execution stop. Our GA-based scheduling method considers the failure time of instances, the

task execution time, and task execution costs.

3. System Architecture

Instance

1

Instance

2

Instance

N

Cluster Server

Workflows

Start End

Mapping

Response

Request

Coordinator

Priority

manager

Task

distributor

Workflow

generator

Workflow Manager Resource scheduler

Resource

manager

Task

allocator

Task-resource

mapper

Instance information manager (1 ~ N)

Resource information

Compute

unit
Memory Storage

Execution information

Execution

cost

Execution

time

Failure

time

Instance information manager (1 ~ N)

Resource information

Compute

unit
Memory Storage

Execution information

Execution

cost

Execution

time

Failure

time

Instance information manager (1 ~ N)

Resource information

Compute

unit
Memory Storage

Execution information

Execution

cost

Execution

time

Failure

time

Link

Manage

RequestResponse

···

···

···

···

Fig. 1. Mapping between workflows and instances

Our proposed scheme expands on our previous work [24] and includes a workflow

scheduling algorithm. We make workflow tasks based on available instances and propose how

to handle tasks. Each available instance operates workflow tasks and uses checkpointing

scheme in Section 3.3. Fig. 1 presents the mapping relationship between workflows and

instances, and illustrates the roles of the instance information manager, the workflow manager,

and the resource scheduler. The instance information manager obtains the information

required for job allocation and resource management. This information includes the VM

specifications for each instance and execution related information such as the execution costs,

execution completion time, and failure time. The execution-related information is calculated

by using the selected VM and is based on the spot history. The workflow manager and

resource scheduler extract the necessary execution-related information from the instance

information manager. First, the workflow manager generates the workflow for the request job.

The generated workflow determines the task size according to the VM performance, the

execution time and costs, and the failure time in the selected instance. Second, the resource

scheduler manages the resource and allocates the task to handle the job. Resource and task

managements perform reallocation when the resource cannot get the mapping-related

information for the task, or when the task has a fault during execution.

In the above model, our proposed scheme uses the workflow in spot instances to minimize

job processing time within the user’s budget. The task size is determined by evaluating the

3130 D. Jung et al.: A Workflow Scheduling Technique Using Genetic Algorithm in Spot Instance-Based Cloud

availability and performance of each instance in order to minimize the job processing time.

The available time is estimated by calculating the execution time and cost using the price

history of spot instances. This helps to improve the performance and stability of task

processing. The estimated time data is used in assigning the amount of task to each instance.

Our proposed scheme reduces out-of-bid situations and improves the job execution time.

However, the total cost is higher than the cost when workflow scheduling is not used.

3.1 Instance types

An instance means a VM rented by a cloud user. Instances are classified into two types:

on-demand instances and spot instances. In on-demand instances, users can use VM resources

after paying a fixed cost on an hourly basis. On the other hand, when using spot instances,

users can use VM resources only when the price of the instances is lower than their bid. The

difference between the two instance types is as follows. In on-demand instances, a failure does

not occur during task execution, but the cost is comparatively high. In contrast, the cost of spot

instances is lower than that of on-demand instances. However, in the case of spot instances,

there is a risk of task failures when the price of the instance becomes higher than the user’s bid.

Fig. 2. Price history of EC2's spot instances for c1-xlarge

Amazon allows users to bid on unused EC2 capacity that includes 42 types of spot instances

[1]. Their prices, which are referred to as spot prices, change dynamically based on the supply

and demand. Fig. 2 shows an example of spot price fluctuation during seven days in December

2010 for c1-xlarge (High-CPU Spot Instances - Extra Large) [14]. Our proposed system model

is based on the characteristics of Amazon EC2's spot instances, which are as follows:

 The system provides a spot instance when a user bid is higher than the current price.

 The system immediately stops the spot instance, without giving any notice, when a user

bid becomes less than or equal to the current price. We refer to this situation as an

out-of-bid event or a failure.

 The system does not charge for the last partial hour when the system stops the spot

instance.

 The system charges for the last partial hour when the user voluntarily terminates the spot

instance.

 The system provides the spot price history.

3.2 Estimated Interval

Our checkpointing operation is performed by analyzing the price variations during selected

time intervals in the past. We estimate the job execution time and cost from the analyzed data.

These estimations are combined with the failure probability in order to calculate the thresholds

Dec 15 Dec 16 Dec 17 Dec 18 Dec 19 Dec 20 Dec 21 Dec 22

0.304

0.312

0.320

0.328

0.336

P
ri
c
e
($

)

Time

 Bid

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 9, September 2014 3131

for the checkpointing operation. The proper estimation of the execution time and cost is

crucial for maintaining the credibility of service providers with customers.

In this paper, we introduce a terminology referred to as Estimated Interval (EI). Fig. 3

shows an illustrative definition of the EI. The detailed definition is as follows:

 Pure task time: The time taken to execute a task on a selected instance when there are no

failures.

 Past pure task time: The sum of the time taken for task execution on the selected instance

in the past, excluding failure times. The time information is extracted from the price

history.

 Past failure time: The sum of failure times for task execution in the past. A failure occurs

when the current user bid goes below the past spot price.

 Estimated interval (EI): The sum of the past pure task time and the past failure time.

 Expected cost: The average of costs charged for task execution in EIs.

Fig. 3. EI illustration

3.3 Our Proposed Checkpointing Scheme

Fig. 4. Our proposed checkpointing scheme

Fig. 4 illustrates our proposed checkpointing scheme [24]. This scheme performs

checkpointing using two kinds of thresholds - price threshold and time threshold - depending

on the expected execution time based on the price history. Let startt and endt denote a start

point and an end point in the expected execution time, respectively. Based on startt and endt , we

obtain the price threshold (PriceTh) and the time threshold (
ipTimeTh), which are used as

thresholds in our proposed checkpoint scheme. The price threshold, PriceTh , can be

calculated as

min

2

bidP User
PriceTh


 (1)

Recovery
P

ric
e
 fo

r a
 s

p
o
t in

s
ta

n
c
e

: checkpoint position (price threshold)
: rising edge over price threshold

Available Duration Failur Available Duration Time

Price Threshold

User bid

t
end

 t
start

: checkpoint position (time threshold)

Past pure task time

Pure task time

Time Length
(a) Pure task time &
 past pure task time

Future Time Past Time Present Time

Real task execution time

(b) Estimated interval

Past pure task time

Estimated interval

Past failure time

3132 D. Jung et al.: A Workflow Scheduling Technique Using Genetic Algorithm in Spot Instance-Based Cloud

where
bidUser represents the bid suggested by the user.

minP is the available minimum price

that the function PriceMin extracts in the period between
startt and

endt . This is given as

follows:

min (,)start endP PriceMin t t (2)

The time threshold of the price
iP ,

ipTimeTh , can be calculated as

(,) (1)
i i ip P start end pTimeTh AvgTime t t F   (3)

where
ipF is the failure probability of price

iP , and (,)
iP start endAvgTime t t represents the average

execution time of
iP in the period between

startt and
endt .

4. Genetic Algorithm Based Job Scheduling

The main goal of our scheduling method is to minimize the execution time and the cost of

running applications. Our scheduling method is based on the genetic algorithm (GA) that is a

well-known and robust search technique for solving large-scale optimization problems. The

GA consists of the following five steps:

(1) Randomly generate an initial population.

(2) Generate offspring using genetic operators such as crossover and mutation.

(3) Rank chromosomes using the defined fitness function.

(4) Update and evaluate the best-ranked chromosomes based on the selection.

(5) Repeat steps 2–4 if the number of pre-determined constraints cannot satisfy the processing

of GA generation.

4.1 Initial Population

Initially, all chromosomes in a population are randomly constructed without any knowledge

of experts. Before describing the representation of a chromosome, let us consider the

definitions of both instances and jobs that each chromosome consists.

 N : the number of instance types;

 M : the number of jobs;


1 2{ , , , }NI I I I : a set of instances;

 iI : an instance of type i (1)i N  ;


1 2{ , , , }MJ J J J : a set of jobs;

 Lj : the number of tasks in j-th job;

 ,1 ,2 ,{ , , , }
jj j j j LJ t t t : a set of tasks in j-th job (1)j M  ;


,j kt : k-th task in j-th job (1)jk L  .

To avoid the complexity of task allocations to instances, we assume two constraints as

follows: one is that all tasks have an identical size. The other is that there is no sequence for

task execution on an instance. Under this assumption, we construct the structure of
two-dimensional chromosomes. Fig. 5 illustrates the two-dimensional chromosome

represented as a grid with N rows and M columns. In this figure, a gene (,)i jI Jg means the i-th

row and the j-th column (1 i N  ,1 j M ) in the chromosome and is interpreted as follows.

 (,)

 numbers of tasks in are allocated to the instance , if 1

 – numbers of tasks in are allocated to the instance , if 1i j

j i

I J

j i

l J I i
g

l k J I i


 


 (4)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 9, September 2014 3133

where k and l respectively represent the values of the adjacent two genes,
1(,)i jI Jg


and (,)i jI Jg

(1)jk l L   .

To meet the requirements for task execution, n instances satisfying the condition in Eq. (5)

are chosen when allocating tasks to initial instances. Our task distribution method determines

the task size in order to allocate a task to a selected instance. Based on a compute-unit and an

available state, the task size of an instance
iI for

jJ (j

i

J

IT) is calculated as

1

1

()

i ij j

i

ii i

I IJ J

I request baselineN

II Ii

U A
T T U

UU A


 
    
  

 (5)

where jJ

requestT represents the total size of tasks in Jj required for executing a user request. In an

instance Ii,
iIU and

iIA represent the compute-unit (the product of CPU and cores) and the

available state, respectively. The available state
iIA can be either 0 (unavailable) or 1

(available). The
baselineU represents the compute-unit of the selected instance to request the

user. The task size is decided by the compute-unit rate based on the baseline.

Each gene
(,)i jI Jg shows the number of task sequences according to the compute-unit of the

selected instance and the variation of task size. The task sequences are related to the task size.

Eq. (6) represents the number of task sequences in gene
(,)i jI Jg .

1 1

(,)

(,)

() ', if 1

() ', if 1

j

i

i j j

i j i

J

I

I J J

I J I

T i
g

g T i
 

 
 

 

 (6)

The task size of each instance in the chromosome adjusts based on Eq. (7). The variation of

task size j

i

J

I is randomly set by Eq. (8).

() 'j j j

i i i

J J J

I I IT T   (7)

[,]j j j

i i i

J J J

I I IT T   (8)

When an initial population is constructed, all genes in the chromosome are randomly set to an

integer value adopting Eq. (6).

J1 J2 J3 · · · Jj · · · JM

I1 5 3 5 11

I2 10 6 10 22

I3 15 9 30 33

···

IN 40 30 50 60

1
() 'jJ

IT

1 2(,) () 'j

j

J

I J Ig T

2 3(,) () 'j

j

J

I J Ig T

1(,) () 'j j

N j N N

J J

I J I Ig T 


 

Fig. 5. Chromosome representation

4.2 Fitness Function

The fitness function defines the criterion for ranking potential hypotheses and for

probabilistically selecting them for inclusion in the next generation of the population.

Additionally, the fitness function is the criterion for determining the quality of chromosomes

3134 D. Jung et al.: A Workflow Scheduling Technique Using Genetic Algorithm in Spot Instance-Based Cloud

in the population. It directly reflects the performance of task distribution. In our paper, the

standard deviation is used as the fitness function to evaluate the performance of chromosomes.

Based on the standard deviation for each chromosome Ck, our fitness function ()
kCf  is

defined as follows.

2

1
() 1 1 (()) /

k i k

N

C I Ci
f EET Avg N



    
 

 (9)

In Eq. (9),
iIEET is the total estimated execution time of the instance

iI .
kCAvg is the average

of total estimated execution time and can be calculated as

1 ,1i

k

N

Ii

C

EET
Avg k P

N

  


 (10)

where, P represents population size.

4.3 Selection

The fittest chromosomes have higher probability to be selected for the next generation. We

use two selection mechanisms. One is the elitism method that forces the GA to retain some

number of the best chromosomes at each generation. The other is a roulette wheel method.

Given the population size P, P - 1 chromosomes in a new population are made by the roulette

wheel method. The elitism method is applied to produce the remaining one chromosome,

which is the best of chromosomes in population pool.

4.4 Genetic Operations (Crossover, Mutation, and Reproduction)

The successive generation in GA is determined by a set of operators that recombine and

mutate selected members of the current population. The crossover operator produces two new

offsprings from two parents, leading to improving the fitness of chromosomes in the current

population. We adapt two-point crossover method to the spot instance environment. In the

typical two-point crossover, a pair of chromosomes is selected according to the crossover

probability pc, and two crossover points are randomly selected. Fig. 6 illustrates an example of

two-point crossover operation in our genetic algorithm.

J1 J2 J3 J4 J5 J6 J7

I1 5 3 5 20 10 4 11

I2 10 6 10 30 30 9 22

J1 J2 J3 J4 J5 J6 J7

I1 6 2 8 10 13 7 17

I2 10 6 10 20 30 9 22

crossover points

J1 J2 J3 J4 J5 J6 J7

I1 5 3 8 10 13 4 11

I2 10 6 10 20 30 9 22

J1 J2 J3 J4 J5 J6 J7

I1 6 2 5 20 10 7 17

I2 10 6 10 30 30 9 22

Before crossover After crossover

Fig. 6. Example of two-point crossover

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 9, September 2014 3135

The mutation operation changes the value of genes in the chromosome according to the

mutation probability pm. Our mutation operation is depicted in Fig. 7. The number of mutation

points is randomly selected by row. After selecting the number of rows, the number of column

mutations is randomly selected in each row. After the mutation operation is applied, the gene
'

(,)i jI Jg is calculated by

(,) 1
'

(,)

(,) 2

, if

, if

i j k i

i j

i j k i

I J C I

I J

I J C I

g r Avg EET
g

g r Avg EET

 
 

 

 (11)

where (,)i jI Jg is a previous gene in the chromosome Ck. 1r and
2r represent the variation to the

gene (,)i jI Jg . There are two cases. In the first case (i.e.
1r), if the

iIEET of the instance Ii is given

less than the average of EET of available instances, the gene
(,)i jI Jg is changed into the new

gene
'

(,)i jI Jg greater than the current value. The
1r is extracted from the value ranging between

(,)i jI Jg and
1(,)i jI Jg


. In the second case (i.e.
2r), if the

iIEET of the instance Ii is greater than the

average of EET of available instances, the gene (,)i jI Jg is changed into the new gene value less

than the current value. The
2r is extracted from the value ranging between

1(,)i jI Jg


 and (,)i jI Jg .

The above-mentioned two cases are applied to only instances between I1 and IN-1. The genes

of last instance (
(,)N jI Jg) can not be changed, because they have the final task number in a job;

i.e, the mutation operation is not applied to these genes.

J1 J2 J3 J4 J5 J6 J7

I1 5 3 5 20 2 4 11

I2 10 6 10 28 30 9 22

I3 15 9 20 30 32 12 33

I4 18 20 30 35 40 15 44

mutation points

Before mutation After mutation

 J1 J2 J3 J4 J5 J6 J7

I1 5 3 5 20 10 4 11

I2 7 5 10 23 30 9 20

I3 15 14 20 30 35 12 33

I4 18 20 30 35 40 15 44

Fig. 7. Example of mutation

The reproduction operation is used to obtain the modifed chromosome for the next

generation. The reproducted chromosomes selects chromosomes to consider the low ranking

of the fitness according to the reproduction probability pr. Each chromosome calculates the

ranking of the fitness based on Eq. (9). The selected chromosome deletes current chromosome

and than reproduces new chromosome. The selected chromosome adjusts the task size based

on the elitism chromosome of the selection phase. The task size of each instance is determined

according to the standard deviation of each instance in the elitism chromosome.

4.5 GA-based Workflow Scheduling (GAWS) Algorithm

Our GA-based Workflow Scheduling (GAWS) algorithm is described in Fig. 8. The

Task_flag represents the occurrence of a task execution, and its initial value is false. When the

task execution is normal (i.e., Task_flag is true), the scheduler performs a workflow operation

3136 D. Jung et al.: A Workflow Scheduling Technique Using Genetic Algorithm in Spot Instance-Based Cloud

(lines 3-27). The GA_flag represents the execution of GA, and its initial value is true; Lines

17-24 are initial population, fitness function, and genetic operations of GA, respectively. Lines

28-35 show the workflow function.

Fig. 8. GAWS algorithm

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

/*Initialization */

Boolean Task_flag = false // a flag representing occurrence of a task execution

Boolean GA_flag = true // a flag representing occurrence of GA

while (search user’s job) do

if (require job execution by the user) then

take the cost and total execution time by the user;

Task_flag = true;

end if

if (job_flag) then

forall instance Ii ∈ all Instances do // search available instances

retrieve an instance information to meet the user’s requirement in an instance Ii;

analyze an available execution time and cost in an instance Ii;

store the analyzed available instance to a queueinstance;

end forall

forall instance Ii ∈ queueinstance do // operate an initial population

the task size of an instance Ii is calculated as Eq. (6);

end forall

/* perform GA operation */

while(GA_flag) do

/* perform fitness functions */

calculate the standard deviation of each chromosome
kC ,

kC as Eq. (9);

/* perform selection (elitism and roulette method) */
chose best chromosome at each generation;

other chromosomes calculate the probability to select genetic operations;

 /* perform crossover, mutation, and reproduction based on fitness functions */
perform two-point crossover to select a pair of chromosomes as the crossover
probability

cp ;

switches the value to select genes with the mutation probability
mp ;

perform reproduction as the reproduction probability
rp ;

end while

invoke workflow ();

end if

end while

Thread_Function workflow () begin

while (task execution does not finish) do

calculate on priority list for the priority job allocation;

forall instance Ii ∈ queueinstance do

allocate tasks to the instance Ii ;

end forall

end while

end Thread_Function

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 9, September 2014 3137

5. Performance Evaluation

In this section, we evaluate and analyze the performance of the proposed scheme through

simulations. The performance comparision for the scheme is also presented.

5.1 Simulation Environment

Before performing our simulations, we describe spot-instance environments and the

simulation parameters used in our GA. Our simulations were conducted using the history data
obtained from Amazon EC2 spot instances [14]. The history data before 10-01-2010 was used

to extract the expected execution time and failure occurrence probability for our checkpointing

scheme. The applicability of our scheme was tested using the history data after 10-01-2010.

Table 1. Resource type information
Instance type

name

Compute

unit

Virtual

cores

Spot price

min

Spot price

average

Spot price

max

m1.small

(Standard)

1 EC2 1 core

(1 EC2)

$0.038 $0.040 $0.053

m1.large

(Standard)

4 EC2 2 cores

(2 EC2)

$0.152 $0.160 $0.168

m1,xlarge

(Standard)

8 EC2 4 cores

(2 EC2)

$0.076 $0.080 $0.084

c1.medium

(High-CPU)

5 EC2 2 cores

(2.5 EC2)

$0.304 $0.323 $1.52

c1.xlarge

(High-CPU)

20 EC2 8 cores

(2.5 EC2)

$0.532 $0.561 $0.588

m2.xlarge

(High-Memory)

6.5 EC2 2 cores

(3.25 EC2)

$0.532 $0.561 $0.588

m2.2xlarge

(High-Memory)

13 EC2 4 cores

(3.25 EC2)

$0.532 $0.561 $0.588

m2.4xlarge

(High-Memory)

26 EC2 8 cores

(3.25 EC2)

$1.064 $1.22 $1.176

Table 2. Parameters and values for simulation

Simulation

parameter

Task time

interval

Baseline Distribution

time

Merge

time

Checkpoint

time

Recovery

time

Value 43,200(s) m1.xlarge 300(s) 300(s) 300(s) 300(s)

Table 3. Parameters and values for GA

Simulation parameter Value

Population size 50

Number of generations 100

Crossover probability (pc) 0.3

Mutation probability (pm) 0.1

Reproduction probability (pr) 0.3

In the simulations, one type of spot instance was applied to demonstrate the effect of task

execution time analysis on the performance. Table 1 shows the various resource types used in

Amazon EC2. In this table, resource types are comprised of different instance types. First,

standard instances offer a basic resource type. Second, high-CPU instances offer more

3138 D. Jung et al.: A Workflow Scheduling Technique Using Genetic Algorithm in Spot Instance-Based Cloud

compute units than other resources, and can be used for computation-intensive applications.

Finally, high-memory instances offer more memory capacity than other resources, and can be

used for high-throughput applications such as databases and memory caching applications. In

the simulation environments, we compared the performance of our proposed scheme with that

of the existing schemes without considering task distribution based on the task execution time.
Table 1 shows the information related to resource types in each instance, and Table 2

shows the parameters and values for our simulation. Table 3 shows the parameters and values

for our genetic algorithm. The spot price information was extracted from the spot history data

from 11-30-2009 to 01-23-2011. The user’s bid was taken as the average of the spot prices

from the spot history data. Using Eq. (5), the task size was decided by the compute-unit rate

based on the baseline m1.xlarge.

5.2 Effect of GA Analysis

43,200 86,400 129,600 172,800 216,000 259,200

0

1x10
4

2x10
4

3x10
4

A
llo

c
a

te
d

 t
a

s
k
 s

iz
e

Task Size

 B-m1.small B-m1.large B-m1.xlarge B-c1.medium B-c1.xlarge B-m2.xlarge B-m2.2xlarge B-m2.4xlarge

 A-m1.small A-m1.large A-m1.xlarge A-c1.medium A-c1.xlarge A-m2.xlarge A-m2.2xlarge A-m2.4xlarge

Fig. 9. Size variations in requested tasks

0 10 20 30 40 50 60 70 80 90 100
1.0x10

-4

2.0x10
-4

3.0x10
-4

4.0x10
-4

5.0x10
-4

F
it
n

e
s
s
 v

a
lu

e

Generation

 Best chromosome

Fig. 10. Fitness curve

In this section, we show the size variations of requested task and the fitness variation

according to GA. Fig. 9 shows the size variations of requested tasks in each instance before

and after using GA. In this figure, “B” and “A” denote the before and after GA, respectively,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 9, September 2014 3139

and each instance type (m1.small, m1.large, etc.) indicates the task size allocated to each

instance among the requested tasks of users. As shown in Fig. 9, when GA is applied, the task

size is varied for each instance. This variation directly relates to the failure time of each

instance; i.e, it is because more tasks are allocated to instances with low failure time by the

evolutionary process of GA.

 Fig. 10 shows the fitness curve of the best chromosome at each generation when GA is

applied in case that the task size is 259,200. In this figure, we can observe that the value of

fitness becomes higher as the generation increases. Therefore, we can see that our genetic

algorithm-based scheme can sufficiently find the optimum solution.

43,200 86,400 129,600 172,800 216,000 259,200

0.0

2.0x10
4

4.0x10
4

6.0x10
4

8.0x10
4

T
im

e
 (

s
e

c
.)

Task Size

 Without-m1.small Without-m1.large Without-m1.xlarge Without-c1.medium Without-c1.xlarge Without-m2.xlarge

 Without-m2.2xlarge Without-m2.4xlarge With-m1.small With-m1.large With-m1.xlarge With-c1.medium

 With-c1.xlarge With-m2.xlarge With-m2.2xlarge With-m2.4xlarge Without-Total
T
 With-Total

T

Fig. 11. Comparison with and without crossover operation

Fig. 11 shows the performance comparison between with and without crossover operation.

In this figure, “Without” and “With” denote without and with the crossover operation,

respectively. Except for the crossover operation, the remaining operations such as initial

population, fitness functions, mutation, and reproduction, are the same as in the previous

simulation. As we can see in this figure, the total execution time is reduced by an average of

3.08% with crossover operation compared to without crossover operation. We can see from

the result of this figure that crossover operation can improve more performance rather than

without crossover operation.

5.3 Effect of the Estimated Execution Analysis

In this simulation, we examined the performance of the estimated execution analysis

according to the task size before and after GA. Figs. 12, 13, 14, and 15 show the total

estimated execution time, estimated cost, estimated failure time, estimated rollback time,

respectively. TotalT is the sum of the estimated execution time in each instance, task

distribution time, and task merge time. TotalC denotes the sum of estimated costs for task

execution in each instance. Fig. 12 shows the total estimated execution time according to the

task size before and after GA, respectively. After GA was applied, the total estimated

execution time was reduced by an average of 33.59%. The total estimated execution times

before and after GA were different because the instance failures occurred at different times.

Fig. 13 shows the estimated failure times before and after GA, respectively. The estimated

failure time of all instances was reduced by an average of 15.45% after applying GA as

compared to when GA was not applied. In Fig. 14, the estimated rollback time after GA

3140 D. Jung et al.: A Workflow Scheduling Technique Using Genetic Algorithm in Spot Instance-Based Cloud

showed an average performance improvement of 19.61% when compared to the rollback time

before GA. The rollback time is calculated from a failure point to the last checkpoint time. Fig.

15 shows the estimated cost before and after applying GA, respectively. The cost after GA was

decreased by an average of $0.12 as compared to the cost before GA. The difference between

costs before and after applying GA is a little due to handling the equal task size. From the

above results, we observe that the estimated execution times and failure times after applying

GA were reduced as compared to before GA. Moreover, the costs were similar. The actual

execution times and costs were compared based on above information. The improved results is

had the reallocated task size according to GA. Because, our proposed GA is obtained relatively

low the standard deviation about the estimated execution time than the standard deviation

without GA.

43,200 86,400 129,600 172,800 216,000 259,200

0.0

2.0x10
4

4.0x10
4

6.0x10
4

8.0x10
4

E
s
ti
m

a
te

d
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

Task Size

 B-m1.small B-m1.large B-m1.xlarge B-c1.medium B-c1.xlarge B-m2.xlarge B-m2.2xlarge B-m2.4xlarge

 A-m1.small A-m1.large A-m1.xlarge A-c1.medium A-c1.xlarge A-m2.xlarge A-m2.2xlarge A-m2.4xlarge

 B-Total
T

 A-Total
T

Fig. 12. Total estimated execution time

43,200 86,400 129,600 172,800 216,000 259,200

0

1x10
4

2x10
4

3x10
4

4x10
4

E
s
ti
m

a
te

d
 f

a
ilu

re
 t

im
e

 (
s
e

c
.)

Task Size

 B-m1.small B-m1.large B-m1.xlarge B-c1.medium B-c1.xlarge B-m2.xlarge B-m2.2xlarge B-m2.4xlarge

 A-m1.small A-m1.large A-m1.xlarge A-c1.medium A-c1.xlarge A-m2.xlarge A-m2.2xlarge A-m2.4xlarge

Fig. 13. Estimated failure time

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 9, September 2014 3141

43,200 86,400 129,600 172,800 216,000 259,200

0

1x10
3

2x10
3

3x10
3

4x10
3

5x10
3

E
s
ti
m

a
te

d
 r

o
llb

a
c
k
 t

im
e

 (
s
e

c
.)

Task Size

 B-m1.small B-m1.large B-m1.xlarge B-c1.medium B-c1.xlarge B-m2.xlarge B-m2.2xlarge B-m2.4xlarge

 A-m1.small A-m1.large A-m1.xlarge A-c1.medium A-c1.xlarge A-m2.xlarge A-m2.2xlarge A-m2.4xlarge

Fig. 14. Estimated rollback time

0

5

10

15

20

25

43,200 86,400 129,600 172,800 216,000 259,200

0

2

4

6

8

10

E
s
ti
m

a
te

d
 c

o
s
ts

 (
$

)

Task Size

 B-m1.small B-m1.large B-m1.xlarge B-c1.medium B-c1.xlarge B-m2.xlarge B-m2.2xlarge B-m2.4xlarge

 A-m1.small A-m1.large A-m1.xlarge A-c1.medium A-c1.xlarge A-m2.xlarge A-m2.2xlarge A-m2.4xlarge

E
s
ti
m

a
te

d
 c

o
s
ts

 (
$

)
:

T
o

ta
l C

 B-Total
C

 A-Total
C

Fig. 15. Estimated costs

5.4 Effect of the Execution Analysis

In this simulation, we examined the performance of the execution analysis according to the

task size before and after GA. Figs. 16, 17, 18, and 19 show the execution results of the actual

data based on the estimated data, before and after GA. In the figures, TotalT denotes the total

time taken for the distribution and merging of tasks. TotalC denotes the sum of costs of task

execution in each instance. Fig. 16 shows that the total execution time is reduced by an

average of 7.06% after GA as compared to before GA. Fig. 17 shows that the total costs after

GA decreased the average by $0.17 when compared to the cost before GA. Fig. 18 shows that

the failure time after GA was increased on average by 13.93% as compared to before GA. In

Fig. 19, the rollback time after GA showed an average performance improvement of 6.52%

when compared to the rollback time before GA. Different fluctuation of spot price contributes

to difference between estimation and actual performances.

3142 D. Jung et al.: A Workflow Scheduling Technique Using Genetic Algorithm in Spot Instance-Based Cloud

43,200 86,400 129,600 172,800 216,000 259,200

0.0

2.0x10
4

4.0x10
4

6.0x10
4

8.0x10
4

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

Task Size

 B-m1.small B-m1.large B-m1.xlarge B-c1.medium B-c1.xlarge B-m2.xlarge B-m2.2xlarge B-m2.4xlarge

 A-m1.small A-m1.large A-m1.xlarge A-c1.medium A-c1.xlarge A-m2.xlarge A-m2.2xlarge A-m2.4xlarge

 B-Total
T

 A-Total
T

Fig. 16. Total execution time in task distribution

0

5

10

15

20

25

43,200 86,400 129,600 172,800 216,000 259,200

0

2

4

6

8

10

C
o

s
ts

 (
$

)

Task Size

 B-m1.small B-m1.large B-m1.xlarge B-c1.medium B-c1.xlarge B-m2.xlarge B-m2.2xlarge B-m2.4xlarge

 A-m1.small A-m1.large A-m1.xlarge A-c1.medium A-c1.xlarge A-m2.xlarge A-m2.2xlarge A-m2.4xlarge

 C
o

s
ts

 (
$

)
:

T
o

ta
l C

 B-Total
C

 A-Total
C

Fig. 17. Costs in task distribution

43,200 86,400 129,600 172,800 216,000 259,200

0

1x10
4

2x10
4

3x10
4

4x10
4

F
a

ilu
re

 t
im

e
 (

s
e

c
.)

Task Size

 B-m1.small B-m1.large B-m1.xlarge B-c1.medium B-c1.xlarge B-m2.xlarge B-m2.2xlarge B-m2.4xlarge

 A-m1.small A-m1.large A-m1.xlarge A-c1.medium A-c1.xlarge A-m2.xlarge A-m2.2xlarge A-m2.4xlarge

Fig. 18. Failure time in task distribution

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 9, September 2014 3143

43,200 86,400 129,600 172,800 216,000 259,200

0

1x10
3

2x10
3

3x10
3

4x10
3

5x10
3

T
im

e
 (

s
e

c
.)

Task Size

 B-m1.small B-m1.large B-m1.xlarge B-c1.medium B-c1.xlarge B-m2.xlarge B-m2.2xlarge B-m2.4xlarge

 A-m1.small A-m1.large A-m1.xlarge A-c1.medium A-c1.xlarge A-m2.xlarge A-m2.2xlarge A-m2.4xlarge

Fig. 19. Rollback time in task distribution

6. Conclusion

In this paper, we proposed a GA-based workflow scheduling technique for task distribution

in unreliable cloud computing environments. In our environment, the resources can be

unreliable anytime due to the fluctuation of instance prices, resulting in increasing the failure

time of users’ job. In order to solve the problem, we proposed GA-based workflow scheduling

technique. The scheme proposed in this study reduced the failure time and the rollback time.

The rollback time in our scheme was less than that of the existing scheme (without GA)

because our scheme adaptively performs task distribution according to the estimated execution

time of available instances. The simulation results showed that the execution time in our

scheme was improved on average by 7.06% after GA as compared to before GA. Additionally,

the failure time after applying GA was reduced on average by 6.52% as compared to before

GA. Therefore, our scheduling method achieved minimizing the execution time and the cost of

running applications. In future, we plan to expand our environment with an efficient GA

operation that takes into consideration the current state of available instances.

7. Acknowledgement

This research was supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Education

(2012R1A1A4A01015777).

References

[1] Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2, 2013.

[2] F.L. Ferraris, D. Franceschelli, M.P. Gioiosa, D. Lucia, D. Ardagna, E. Di Nitto, and T. Sharif,

“Evaluating the Auto Scaling Performance of Flexiscale and Amazon EC2 Clouds,” in Proc. of

Proceedings of 14th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), pp. 423–429, 2012. Article (CrossRef Link).

[3] H.N. Van, F.D. Tran, and J.M. Menaud, “SLA-Aware Virtual Resource Management for Cloud

Infrastructures,” in Proc. of Proceedings of the 2009 Ninth IEEE International Conference on

http://aws.amazon.com/ec2
http://dx.doi.org/10.1109/SYNASC.2012.58

3144 D. Jung et al.: A Workflow Scheduling Technique Using Genetic Algorithm in Spot Instance-Based Cloud

Computer and Information Technology, vol. 2, pp. 357–362. IEEE Computer Society, 2009.
Article (CrossRef Link).

[4] M. Komal, M. Ansuyia, and D. Deepak, “Round Robin with Server Affinity: A VM Load

Balancing Algorithm for Cloud Based Infrastructure,” Journal of Information Processing Systems,
vol. 9, no. 3, pp. 379–394, 2013. Article (CrossRef Link).

[5] Hasan Sabbir and Eui-Nam Huh, “Heuristic based Energy-aware Resource Allocation by Dynamic

Consolidation of Virtual Machines in Cloud Data Center,” KSII Transactions on Internet &
Information Systems, vol. 7, Issue 8, pp. 1825–1842, 2013. Article (CrossRef Link).

[6] Siqi Shen, Kefeng Deng, Alexandru Iosup, and Dick Epema, “Scheduling jobs in the cloud using

on-demand and reserved instances,” in Proc. of Proceedings of the 19th international conference
on Parallel Processing (Euro-Par'13), pp. 242–254, 2013. Article (CrossRef Link).

[7] Amazon EC2 spot Instances, http://aws.amazon.com/ec2/spot-instances/, 2013.

[8] S. Yi, D. Kondo, and A. Andrzejak, “Reducing Costs of Spot Instances via Checkpointing in the

Amazon Elastic Compute Cloud,” in Proc. of Proceedings of the 2010 IEEE 3rd International

Conference on Cloud Computing, pp. 236–243. IEEE Computer Society, 2010.
Article (CrossRef Link).

[9] G. Singer, I. Livenson, M. Dumas, S. N. Srirama, and U. Norbisrath, “Towards a model for cloud

computing cost estimation with reserved resources,” in Proc. of Proceedings. of 2nd ICST

International Conference on CloudComp 2010, Barcelona, Spain. Springer, October 2010.
Article (CrossRef Link).

[10] M. Mazzucco and M. Dumas, “Reserved or On-Demand Instances? A Revenue Maximization

Model for Cloud Providers,” in Proc. of Proceedings of the 4th IEEE International CLOUD 2011,
pp. 428–435, July 2011. Article (CrossRef Link).

[11] S. Yi, J. Heo, Y. Cho, and J. Hong, “Taking point decision mechanism for page-level incremental

checkpointing based on cost analysis of process execution time,” Journal of Information Science
and Engineering, vol. 23, no. 5, pp. 1325–1337, 2007. Article (CrossRef Link).

[12] William Voorsluys and Rajkumar Buyya., “Reliable Provisioning of Spot Instances for

Compute-intensive Applications,” in Proc. of IEEE 26th International Conference on Advanced
Information Networking and Applications, 2012. Article (CrossRef Link).

[13] Qi Zhang, Eren Gurses, Raouf Boutaba, and Jin Xiao., “Dynamic resource allocation for spot

markets in clouds,” in Proc. of the 11th USENIX conference Hot-ICE'11, pp. 1–6, 2011.
Article (CrossRef Link).

[14] Cloud exchange, http://cloudexchange.org, 2013.

[15] Goiri, F. Julia, J. Guitart, and J. Torres., “Checkpoint-based Fault-tolerant Infrastructure for

Virtualized Service Providers,” 12th IEEE/IFIP NOMS'10, pp. 455–462, April 2010.
Article (CrossRef Link).

[16] H. Fernandez, M. Obrovac, and C. Tedeschi, “Decentralised Multiple Workflow Scheduling via a

Chemically-coordinated Shared Space,” INRIA Research Report, RR-7925, pp. 1–14, 2012.
Article (CrossRef Link).

[17] K. Liu, J. Chen, Y. Yang, and H. Jin, “A throughput maximization strategy for scheduling

transaction-intensive workflows on SwinDeW-G,” Concurrency and Computation: Practice and
Experience, vol. 20, issue 15, pp. 1807–1820, 2008. Article (CrossRef Link).

[18] B. Hutt and K. Warwick, “Synapsing Variable-Length Crossover: Meaningful Crossover for

Variable-Length Genomes,” IEEE Transactions on Evolutionary Computation, vol. 11, issue 1, pp.
118 – 131, 2007. Article (CrossRef Link).

[19] John H. Holland, “Adaptation in natural and artificial systems: An introductory analysis with

applications to biology, control, and artificial intelligence,” U. Michigan Press, 1975.
Article (CrossRef Link).

[20] Fullmer, Brad, and Risto Miikkulainen, “Using marker-based genetic encoding of neural networks

to evolve finite-state behavior,” in Proc. of Toward a Practice of Autonomous Systems:

Proceedings of the First European Conference on Artificial Life, pp. 252–262, 1992.
Article (CrossRef Link).

[21] J. Gu, J. Hu, Tianhai Zhao, and Guofei Sun, “A new resource scheduling strategy based on genetic

http://dx.doi.org/10.1109/CIT.2009.109
http://dx.doi.org/10.3745/JIPS.2013.9.3.379
http://dx.doi.org/10.3837/tiis.2013.08.005
http://dx.doi.org/10.1007/978-3-642-40047-6_27
http://aws.amazon.com/ec2/spot-instances/
http://dx.doi.org/10.1109/CLOUD.2010.35
http://dx.doi.org/10.4304/jcp.7.1.42-52
http://dx.doi.org/10.1109/CLOUD.2011.25
http://www.iis.sinica.edu.tw/page/jise/2007/200709_01.html
http://dx.doi.org/10.1109/AINA.2012.106
http://dx.doi.org/10.1109/UCC.2011.33
http://cloudexchange.org/
http://dx.doi.org/10.1109/NOMS.2010.5488493
http://hal.inria.fr/hal-00690357
http://dx.doi.org/10.1002/cpe.1316
http://dx.doi.org/10.1109/TEVC.2006.878096
http://mitpress.mit.edu/books/adaptation-natural-and-artificial-systems
http://nn.cs.utexas.edu/?fullmer:ecal91

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 9, September 2014 3145

algorithm in cloud computing environment,” Journal of Computers, vol. 7, no. 1, pp. 42–52, 2012.
Article (CrossRef Link).

[22] S. Kaur and A. Verma, “An Efficient Approach to Genetic Algorithm for Task Scheduling in

Cloud Computing Environment,” International Journal of Information Technology and Computer
Science (IJITCS), vol. 4, no.10, pp. 74–79, 2012. Article (CrossRef Link).

[23] Fatma A. Omara and Mona M. Arafa, “Genetic algorithms for task scheduling problem,” Journal

of Parallel and Distributed Computing (JPDC), vol. 70, issue 7, pp. 758–766, 2010.
Article (CrossRef Link).

[24] D. Jung, S. Chin, K. Chung, H. Yu, and J. Gil, “An Efficient Checkpointing Scheme Using Price

History of Spot Instances in Cloud Computing Environment,” in Proc. of Proceeding of NPC2011,
pp. 185–200, 2011. Article (CrossRef Link).

Daeyong Jung is Integrated Master and Ph.D. candidates in the Department of

Computer Science Education of Korea University. He received his B.S. degree in

Department of Electronic Engineering from Hanbat National University, Daejeon,

Korea, in 2007, His main research interests are cloud computing, grid computing,

distributed computing, and fault-tolerance systems.

Taeweon Suh received the Ph.D. degree in Electrical and Computer Engineering

from the Georgia Institute of Technology. He is currently an associate professor in the

Department of computer science and engineering at Korea University. His research

interests include embedded systems, computer architecture, parallel computer

architecture & programming, and computer science education.

Heonchang Yu received the B.S., M.S., and Ph.D. degrees in computer science and

engineering from Korea University, Seoul, Korea, in 1989, 1991, and 1994,

respectively. He has been a Professor of computer science and engineering with Korea

University since 1998. From February 2011 to January 2012, he was a Visiting

Professor of electrical and computer engineering in Virginia Tech. Since 2011, he has

been the Director of Korea Information Processing Society, Korea. Prof. Yu is the

Vice President of the Korean Association of Computer Education and an Editor of the

Korean Institute of Information Technology. He was awarded the Okawa Foundation

Research Grant of Japan in 2008. His research interests include cloud computing, grid

computing, distributed computing, and fault-tolerant systems.

JoonMin Gil received the B.S. and M.S. degrees in computer science from Korea

University, Korea, in 1994 and 1996, respectively, and the Ph.D. degree in computer

science and engineering from Korea University, Korea in 2000. From 2001 to 2002,

he was a Visiting Research Associate with the Department of Computer Science,

University of Illinois at Chicago, Chicago, IL, USA. From October 2002 to February

2006, he was a Senior Research Engineer with the Supercomputing Center, Korea

Institute of Science and Technology Information (KISTI), Daejeon, Korea. In March

2006, he joined the Catholic University of Daegu, Korea, where he is currently an

Associate Professor with the School of Information Technology Engineering. His

recent research interests include cloud computing, distributed systems, wireless and

sensor networks, and Internet computing.

http://dx.doi.org/10.4304/jcp.7.1.42-52
http://www.mecs-press.org/ijitcs/ijitcs-v4-n10/v4n10-9.html
http://www.sciencedirect.com/science/article/pii/S0743731509001804
http://link.springer.com/chapter/10.1007%2F978-3-642-24403-2_16

