• Title/Summary/Keyword: cloud computing systems

Search Result 602, Processing Time 0.026 seconds

Visual Monitoring System of Multi-Hosts Behavior for Trustworthiness with Mobile Cloud

  • Song, Eun-Ha;Kim, Hyun-Woo;Jeong, Young-Sik
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.347-358
    • /
    • 2012
  • Recently, security researches have been processed on the method to cover a broader range of hacking attacks at the low level in the perspective of hardware. This system security applies not only to individuals' computer systems but also to cloud environments. "Cloud" concerns operations on the web. Therefore it is exposed to a lot of risks and the security of its spaces where data is stored is vulnerable. Accordingly, in order to reduce threat factors to security, the TCG proposed a highly reliable platform based on a semiconductor-chip, the TPM. However, there have been no technologies up to date that enables a real-time visual monitoring of the security status of a PC that is operated based on the TPM. And the TPB has provided the function in a visual method to monitor system status and resources only for the system behavior of a single host. Therefore, this paper will propose a m-TMS (Mobile Trusted Monitoring System) that monitors the trusted state of a computing environment in which a TPM chip-based TPB is mounted and the current status of its system resources in a mobile device environment resulting from the development of network service technology. The m-TMS is provided to users so that system resources of CPU, RAM, and process, which are the monitoring objects in a computer system, may be monitored. Moreover, converting and detouring single entities like a PC or target addresses, which are attack pattern methods that pose a threat to the computer system security, are combined. The branch instruction trace function is monitored using a BiT Profiling tool through which processes attacked or those suspected of being attacked may be traced, thereby enabling users to actively respond.

A Study on Intention to Use Personal Cloud Services: Focusing on Value Comparison (개인용 클라우드 서비스 사용 의도 연구: 가치 비교를 중심으로)

  • Kyunghoi Min;Chanhee Kwak;HanByeol Stella Choi;Heeseok Lee
    • Information Systems Review
    • /
    • v.22 no.2
    • /
    • pp.1-24
    • /
    • 2020
  • Cloud computing technology is expanding its services to individual consumers through storage and applications. This study aims to compare the predisposing factors that affect the perceived value and the intention to use between users who have used or experienced services and those who have never experienced services from the perspective of benefit and sacrifice based on the value-based acceptance model. The results showed that the sacrifice factor (perceived cost) had a significant effect on perceived value and perceived value had a significant effect on intention to use, but showed a difference in perceived benefit. Perceived usefulness, ubiquity, and network effects had significant impact for experienced users' perceived value, but for inexperienced users, ubiquity did not have significant impact. In addition, usefulness was the most significant factor for experienced users while network effect was the same for inexperienced users. The results of this study suggest that consumers' intention to use personal cloud service is evaluated as a benefit and sacrifice point and a new attempt to re-examine the role of previous experience.

GPU Resource Contention Management Technique for Simultaneous GPU Tasks in the Container Environments with Share the GPU (GPU를 공유하는 컨테이너 환경에서 GPU 작업의 동시 실행을 위한 GPU 자원 경쟁 관리기법)

  • Kang, Jihun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.333-344
    • /
    • 2022
  • In a container-based cloud environment, multiple containers can share a graphical processing unit (GPU), and GPU sharing can minimize idle time of GPU resources and improve resource utilization. However, in a cloud environment, GPUs, unlike CPU or memory, cannot logically multiplex computing resources to provide users with some of the resources in an isolated form. In addition, containers occupy GPU resources only when performing GPU operations, and resource usage is also unknown because the timing or size of each container's GPU operations is not known in advance. Containers unrestricted use of GPU resources at any given point in time makes managing resource contention very difficult owing to where multiple containers run GPU tasks simultaneously, and GPU tasks are handled in black box form inside the GPU. In this paper, we propose a container management technique to prevent performance degradation caused by resource competition when multiple containers execute GPU tasks simultaneously. Also, this paper demonstrates the efficiency of container management techniques that analyze and propose the problem of degradation due to resource competition when multiple containers execute GPU tasks simultaneously through experiments.

A Bi-objective Game-based Task Scheduling Method in Cloud Computing Environment

  • Guo, Wanwan;Zhao, Mengkai;Cui, Zhihua;Xie, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3565-3583
    • /
    • 2022
  • The task scheduling problem has received a lot of attention in recent years as a crucial area for research in the cloud environment. However, due to the difference in objectives considered by service providers and users, it has become a major challenge to resolve the conflicting interests of service providers and users while both can still take into account their respective objectives. Therefore, the task scheduling problem as a bi-objective game problem is formulated first, and then a task scheduling model based on the bi-objective game (TSBOG) is constructed. In this model, energy consumption and resource utilization, which are of concern to the service provider, and cost and task completion rate, which are of concern to the user, are calculated simultaneously. Furthermore, a many-objective evolutionary algorithm based on a partitioned collaborative selection strategy (MaOEA-PCS) has been developed to solve the TSBOG. The MaOEA-PCS can find a balance between population convergence and diversity by partitioning the objective space and selecting the best converging individuals from each region into the next generation. To balance the players' multiple objectives, a crossover and mutation operator based on dynamic games is proposed and applied to MaPEA-PCS as a player's strategy update mechanism. Finally, through a series of experiments, not only the effectiveness of the model compared to a normal many-objective model is demonstrated, but also the performance of MaOEA-PCS and the validity of DGame.

An Application of MapReduce Technique over Peer-to-Peer Network (P2P 네트워크상에서 MapReduce 기법 활용)

  • Ren, Jian-Ji;Lee, Jae-Kee
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.8
    • /
    • pp.586-590
    • /
    • 2009
  • The objective of this paper describes the design of MapReduce over Peer-to-Peer network for dynamic environments applications. MapReduce is a software framework used for Cloud Computing which processing large data sets in a highly-parallel way. Based on the Peer-to-Peer network character which node failures will happen anytime, we focus on using a DHT routing protocol which named Pastry to handle the problem of node failures. Our results are very promising and indicate that the framework could have a wide application in P2P network systems while maintaining good computational efficiency and scalability. We believe that, P2P networks and parallel computing emerge as very hot research and development topics in industry and academia for many years to come.

A Fast and Secure Scheme for Data Outsourcing in the Cloud

  • Liu, Yanjun;Wu, Hsiao-Ling;Chang, Chin-Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2708-2721
    • /
    • 2014
  • Data outsourcing in the cloud (DOC) is a promising solution for data management at the present time, but it could result in the disclosure of outsourced data to unauthorized users. Therefore, protecting the confidentiality of such data has become a very challenging issue. The conventional way to achieve data confidentiality is to encrypt the data via asymmetric or symmetric encryptions before outsourcing. However, this is computationally inefficient because encryption/decryption operations are time-consuming. In recent years, a few DOC schemes based on secret sharing have emerged due to their low computational complexity. However, Dautrich and Ravishankar pointed out that most of them are insecure against certain kinds of collusion attacks. In this paper, we proposed a novel DOC scheme based on Shamir's secret sharing to overcome the security issues of these schemes. Our scheme can allow an authorized data user to recover all data files in a specified subset at once rather than one file at a time as required by other schemes that are based on secret sharing. Our thorough analyses showed that our proposed scheme is secure and that its performance is satisfactory.

Diet-Right: A Smart Food Recommendation System

  • Rehman, Faisal;Khalid, Osman;Haq, Nuhman ul;Khan, Atta ur Rehman;Bilal, Kashif;Madani, Sajjad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2910-2925
    • /
    • 2017
  • Inadequate and inappropriate intake of food is known to cause various health issues and diseases. Due to lack of concise information about healthy diet, people have to rely on medicines instead of taking preventive measures in food intake. Due to diversity in food components and large number of dietary sources, it is challenging to perform real-time selection of diet patterns that must fulfill one's nutrition needs. Particularly, selection of proper diet is critical for patients suffering from various diseases. In this article, we highlight the issue of selection of proper diet that must fulfill patients' nutrition requirements. To address this issue, we present a cloud based food recommendation system, called Diet-Right, for dietary recommendations based on users' pathological reports. The model uses ant colony algorithm to generate optimal food list and recommends suitable foods according to the values of pathological reports. Diet-Right can play a vital role in controlling various diseases. The experimental results show that compared to single node execution, the convergence time of parallel execution on cloud is approximately 12 times lower. Moreover, adequate accuracy is attainable by increasing the number of ants.

Deadline Constrained Adaptive Multilevel Scheduling System in Cloud Environment

  • Komarasamy, Dinesh;Muthuswamy, Vijayalakshmi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1302-1320
    • /
    • 2015
  • In cloud, everything can be provided as a service wherein a large number of users submit their jobs and wait for their services. hus, scheduling plays major role for providing the resources efficiently to the submitted jobs. The brainwave of the proposed ork is to improve user satisfaction, to balance the load efficiently and to bolster the resource utilization. Hence, this paper roposes an Adaptive Multilevel Scheduling System (AMSS) which will process the jobs in a multileveled fashion. The first level ontains Preprocessing Jobs with Multi-Criteria (PJMC) which will preprocess the jobs to elevate the user satisfaction and to itigate the jobs violation. In the second level, a Deadline Based Dynamic Priority Scheduler (DBDPS) is proposed which will ynamically prioritize the jobs for evading starvation. At the third level, Contest Mapping Jobs with Virtual Machine (CMJVM) is roposed that will map the job to suitable Virtual Machine (VM). In the last level, VM Scheduler is introduced in the two-tier VM rchitecture that will efficiently schedule the jobs and increase the resource utilization. These contributions will mitigate job iolations, avoid starvation, increase throughput and maximize resource utilization. Experimental results show that the performance f AMSS is better than other algorithms.

A Novel Method for Virtual Machine Placement Based on Euclidean Distance

  • Liu, Shukun;Jia, Weijia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2914-2935
    • /
    • 2016
  • With the increasing popularization of cloud computing, how to reduce physical energy consumption and increase resource utilization while maintaining system performance has become a research hotspot of virtual machine deployment in cloud platform. Although some related researches have been reported to solve this problem, most of them used the traditional heuristic algorithm based on greedy algorithm and only considered effect of single-dimensional resource (CPU or Memory) on energy consumption. With considerations to multi-dimensional resource utilization, this paper analyzed impact of multi-dimensional resources on energy consumption of cloud computation. A multi-dimensional resource constraint that could maintain normal system operation was proposed. Later, a novel virtual machine deployment method (NVMDM) based on improved particle swarm optimization (IPSO) and Euclidean distance was put forward. It deals with problems like how to generate the initial particle swarm through the improved first-fit algorithm based on resource constraint (IFFABRC), how to define measure standard of credibility of individual and global optimal solutions of particles by combining with Bayesian transform, and how to define fitness function of particle swarm according to the multi-dimensional resource constraint relationship. The proposed NVMDM was proved superior to existing heuristic algorithm in developing performances of physical machines. It could improve utilization of CPU, memory, disk and bandwidth effectively and control task execution time of users within the range of resource constraint.

Bioinformatics services for analyzing massive genomic datasets

  • Ko, Gunhwan;Kim, Pan-Gyu;Cho, Youngbum;Jeong, Seongmun;Kim, Jae-Yoon;Kim, Kyoung Hyoun;Lee, Ho-Yeon;Han, Jiyeon;Yu, Namhee;Ham, Seokjin;Jang, Insoon;Kang, Byunghee;Shin, Sunguk;Kim, Lian;Lee, Seung-Won;Nam, Dougu;Kim, Jihyun F.;Kim, Namshin;Kim, Seon-Young;Lee, Sanghyuk;Roh, Tae-Young;Lee, Byungwook
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.8.1-8.10
    • /
    • 2020
  • The explosive growth of next-generation sequencing data has resulted in ultra-large-scale datasets and ensuing computational problems. In Korea, the amount of genomic data has been increasing rapidly in the recent years. Leveraging these big data requires researchers to use large-scale computational resources and analysis pipelines. A promising solution for addressing this computational challenge is cloud computing, where CPUs, memory, storage, and programs are accessible in the form of virtual machines. Here, we present a cloud computing-based system, Bio-Express, that provides user-friendly, cost-effective analysis of massive genomic datasets. Bio-Express is loaded with predefined multi-omics data analysis pipelines, which are divided into genome, transcriptome, epigenome, and metagenome pipelines. Users can employ predefined pipelines or create a new pipeline for analyzing their own omics data. We also developed several web-based services for facilitating downstream analysis of genome data. Bio-Express web service is freely available at https://www. bioexpress.re.kr/.