• Title/Summary/Keyword: clock error

Search Result 264, Processing Time 0.025 seconds

A Two-Way Ranging WPAN Location System with Clock Offset Estimation (클락 오프셋 추정 방식을 이용한 TWR WPAN 측위 시스템)

  • Park, Jiwon;Lim, Jeongmin;Lee, Kyujin;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.125-130
    • /
    • 2013
  • Compared to OWR (One-Way Ranging) method that requires precise network time synchronization, TWR (Two-Way Ranging) method has advantages in building an indoor WPAN (Wireless Personal Area Network) location system with lower cost. However, clock offsets of nodes in WPAN system should be eliminated or compensated to improve location accuracy of the TWR method. Because conventional clock offset elimination methods requires multiple TWR transactions to reduce clock offset, they produce network traffic burden instead. This paper presents a clock offset estimation method that can reduce clock offset error with a single TWR transaction. After relative clock offsets of sensor nodes are estimated, clock offsets of mobile tags are estimated using a single TWR communication. Simulation results show that location accuracy of the proposed method is almost similar to the conventional clock offset elimination method, while its network traffic is about a half of the conventional method.

A Band-Selective CPPLL for Fast Acquisition time (빠른 Acquisition 시간을 위한 Band-Selective CPPLL)

  • 류상하;김재완;김수원
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.85-88
    • /
    • 2000
  • This paper describes a Band-Selective Charge-Pump PLL(CPPLL) for clock recovery and clock generator. The proposed PLL satisfies fast acquisition time and low jitter characteristics simultaneously by reducing initial frequency error. The acquisition time of the designed Band-Selective CPPLL can be decreased down to 55% of a conventional CPPLL.

  • PDF

Adaptive current-steering analog duty cycle corrector with digital duty error detection (디지털 감지기를 통해 전류 특성을 조절하는 아날로그 듀티 사이클 보정 회로)

  • Choi, Hyun-Su;Kim, Chan-Kyung;Kong, Bai-Sun;Jun, Young-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.465-466
    • /
    • 2006
  • In this paper, novel analog duty cycle corrector (DCC) with a digital duty error detector is proposed. The digital duty error detector measures the duty error of the clock and converts it into a digital code. This digital code is then used to accurately correct the duty ratio by adaptively steering the charge-pump current. The proposed duty cycle corrector was implemented using an 80nm DRAM process with 1.8V supply voltage. The simulation result shows that the proposed duty cycle corrector improves the settling time up to $70{\sim}80%$ at 500MHz clock frequency for the same duty correction accuracy as the conventional analog DCC.

  • PDF

A web-based remote slave clock system by common-view measurement of satellite time (위성시각 동시측정에 의한 웹기반 슬레이브클럭 시스템)

  • Kim Young beom
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12B
    • /
    • pp.1037-1041
    • /
    • 2004
  • In this paper we propose a new conceptual slave clock system in which remotely located clock is synchronized to the reference clock by intermediation of the satellite time, show a probability of adoption to real network by experiments. This new proposed method has lots of structural advantages over the existing methods because all of the node clocks can be maintained with the same hierarchical quality. The measurement results show that the accuracy of the experimental slave clock system can be kept within a few parts in 1012 and that the MTIE (Maximum Time Interval Error) meets the ITU-T Recommendation G.811 for the primary reference clock A prototype system having fully automatic operational functions has been realized, and it is expected to be commercially used as a node clock for synchronization in the digital communication network in the near future.

DLL Design of SMD Structure with DCC using Reduced Delay Lines (지연단을 줄인 SMD 구조의 DCC를 가지는 DLL 설계)

  • Hong, Seok-Yong;Cho, Seong-Ik;Shin, Hong-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1133-1138
    • /
    • 2007
  • DLLs(Delay Locked Loops) have widely been used in many systems in order to achieve the clock synchronization. A SMD (Synchronous Mirror Delay) structure is used both for skew reduction and for DCC (Duty Cycle Correction). In this paper, a SMD based DLL with DCC using Reduced Delay Lines is proposed in order to reduce the clock skew and correct the duty cycle. The merged structure allows the forward delay array to be shared between the DLL and the DCC, and yields a 25% saving in the number of the required delay cells. The designed chip was fabricated using a $0.25{\mu}m$ 1-poly, 4-metal CMOS process. Measurement results showed the 3% duty cycle error when the input signal ranges from 80% to 20% and the clock frequency ranges from 400MHz to 600MHz. The locking operation needs 3 clock and duty correction requires only 5 clock cycles as feature with SMD structure.

A DLL Based Clock Synthesizer with Locking Status Indicator A DLL Based Clock Synthesizer with Locking Status Indicator

  • Ryu Young-Soo;Choi Young-Shig
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.3
    • /
    • pp.142-145
    • /
    • 2005
  • In this paper, a new programmable DLL (delay locked loop) based clock synthesizer is proposed. DLL has several inherent advantages, such as no phase accumulation error, fast locking and easy integration of the loop filter. This paper proposes a new programmable DLL that includes a PFD(phase frequency detector), a LSI(lock status indicator), and a VCDL(voltage controlled delay line) to generate multiple clocks. It can generate clocks from 3 to 9 times of input clock with $2{\mu}s$ locking time. The proposed DLL operating in the frequency range of 300MHZ-900MHz is verified by the HSPICE simulation with a $0.35{\mu}m$ CMOS process.

Design of Wide-range All Digital Clock and Data Recovery Circuit (광대역 전디지털 클록 데이터 복원회로 설계)

  • Go, Gwi-Han;Jung, Ki-Sang;Kim, Kang-Jik;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1695-1699
    • /
    • 2012
  • This paper is proposed all digital wide-range clock and data recovery circuit. The Proposed clock data recovery circuit is possible input data rate which is suggested is wide-range that extends from 100Mb/s to 3Gb/s and used an phase error detector which can use a way of over-sampling a data by using a 1/2-rate multi-phase clock and phase rotator which is regular size per $2{\pi}$/16 and can make a phase rotation. So it could make the phase rotating in range of input data rate. Also all circuit is designed as a digital which has a specificity against a noise. This circuit is designed to 0.13um CMOS process and verified simulation to spectre tool.

Design of 1/4-rate Clock and Date Recovery Circuit for High-speed Serial Display Interface (고속 직렬 디스플레이 인터페이스를 위한 1/4-rate 클록 데이터 복원회로 설계)

  • Jung, Ki-Sang;Kim, Kang-Jik;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.455-458
    • /
    • 2011
  • 4:10 deserializer is proposed to recover 1:10 serial data using 1/4-rate clock. And then, 1/4-rate CDR(Clock and Data Recovery) circuit was designed for SERDES of high-speed serial display interface. The reduction of clock frequency using 1/4-rate clocking helps relax the speed limitation when higher data transfer is demanded. This circuit is composed of 1/4-rate sampler, PEL(Phase Error Logic), Majority Voting, Digital Filter, DPC(Digital to Phase Converter) and 4:10 deserializer. The designed CDR has been designed in a standard $0.18{\mu}m$ 1P6M CMOS technology and the recovered data jitter is 14ps in simulation.

A Low EMI Spread Spectrum Clock Generator Using TIE-Limited Frequency Modulation Technique (TIE 제한 주파수 변조 기법을 이용한 낮은 EMI 분산 스펙트럼 클록 발생기)

  • Piao, Taiming;Wee, Jae-Kyung;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.537-543
    • /
    • 2013
  • This paper proposed a low EMI spread spectrum clock generator (SSCG) using discontinuous frequency modulation technique. The proposed SSCG is designed for triangular frequency modulation with high modulation depth. When the maximum time interval error (MTIE) of the SSCG is higher than given limit, the output frequency of SSCG is divided by two and used for reducing the time interval error (TIE). This discontinuous frequency modulation technique can effectively reduce the EMI within given limit. The simulated EMI of proposed SSCG was reduced by 18.5dB than that of conventional methods.

A New Simplified Clock Synchronization Algorithm for Indoor Positioning (실내측위를 위한 새로운 클락 동기 방안)

  • Lee, Young-Kyu;Yang, Sung-Hoon;Lee, Seong-Woo;Lee, Chang-Bok;Kim, Young-Beom;Choe, Seong-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.237-246
    • /
    • 2007
  • Clock Synchronization is one of the most basic factors to be considered when we implement an indoor synchronization network for indoor positioning. In this paper, we present a new synchronization algorithm which does not employ time stamps in order to reduce the hardware complexity and data overhead. In addition to that, we describe an algorithm that is designed to compensate the frequency drift giving an serious impact on the synchronization performance. The performance evaluation of the proposed algorithm is achieved by investigating MTIE (Maximum Time Interval Error) values through simulations. In the simulations, the frequency drift values of the practical oscillators are used. From the simulation results, it is investigated that we can achieve the synchronization performance under 10 ns when we use 1 second synchronization interval with 1 ns resolution and TCXOs (Tmperature Compensated Cristal Oscillators) both in the master clock and the slave clock.