• Title/Summary/Keyword: climate modeling

Search Result 462, Processing Time 0.024 seconds

Numerical Simulation for Urban Climate Assessment and Hazard (도시기후 평가와 방재를 위한 도시기상 수치모의)

  • O, Seong-Nam
    • Magazine of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.40-47
    • /
    • 2002
  • Since it is important to understand the bio-climatic change in Seoul for ecological city planning in the future, this paper gives an overview on bio-climate analysis of urban environments at Seoul. We analyzed its characteristics in recent years using the observations of 24 of Automatic Weather Station (AWS) by Korea Meteorological Administration (KMA). In urbanization, Seoul metropolitan area is densely populated and is concentrated with high buildings. This urban activity changes land covering, which modifies the local circulation of radiation, heat and moisture, precipitation and creating a specific climate. Urban climate is evidently manifested in the phenomena of the increase of the air temperature, called urban heat Island and in addition urban sqall line of heavy rain. Since a city has its different land cover and street structure, these form their own climate character such as climate comfort zone. The thermal fold in urban area such as the heat island is produced by the change of land use and the air pollution that provide the bio-climate change of urban eco-system. The urban wind flow is the most important climate element on dispersion of air pollution, thermal effects and heavy shower. Numerical modeling indicates that the bio-climatic transition of wind wake in urban area and the dispersion of the air pollution by the simulations of the wind variation depend on the urban land cover change. The winds are separately simulated on small and micro-scale at Seoul with two kinds of kinetic model, Witrak and MUKLIMO.

  • PDF

A Simulation Study on Future Climate Change Considering Potential Forest Distribution Change in Landcover (잠재 산림분포 변화를 고려한 토지이용도가 장래 기후변화에 미치는 영향 모사)

  • Kim, Jea-Chul;Lee, Chong Bum;Choi, Sungho
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.105-117
    • /
    • 2012
  • Future climate according to land-use change was simulated by regional climate model. The goal of study was to predict the distribution of meteorological elements using the Weather Research & Forecasting Model (WRF). The KME (Korea Ministry of Environment) medium-category land-use classification was used as dominant vegetation types. Meteorological modeling requires higher and more sophisticated land-use and initialization data. The WRF model simulations with HyTAG land-use indicated certain change in potential vegetation distribution in the future (2086-2088). Compared to the past (1986-1988) distribution, coniferous forest area was decreased in metropolitan and areas with complex terrain. The research shows a possibility to simulate regional climate with high resolution. As a result, the future climate was predicted to $4.5^{\circ}$ which was $0.5^{\circ}$ higher than prediction by Meteorological Administration. To improve future prediction of regional area, regional climate model with HyTAG as well as high resolution initial values such as urban growth and CO2 flux simulation would be desirable.

Long-term Changes in Wintertime Precipitation and Snowfall over Gangwon Province (강원 지역의 장기 겨울철 강수 및 강설 변화의 경향 분석)

  • Baek, Hee-Jeong;Ahn, Kwangdeuk;Joo, Sangwon;Kim, Yoonjae
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.109-123
    • /
    • 2017
  • The effects of recent climate change on hydrological systems could affect the Winter Olympic Games (WOG) because the event is dependent on suitable snow and ice conditions to support elite-level competitions. We investigate the long-term variability and change in winter total precipitation (P), snowfall water equivalent (SFE), and ratios of SFE to P during the period 1973/74~2015/16 in Gangwon province. The climatological percentages of SFE relative to winter total precipitation were 71%, 28%, and 44% in Daegwallyeong, Chuncheon, and Gangneung, respectively. The winter total P, SFE, and SFE/P has decreased (but not significantly), although significant increases of winter maximum and minimum temperature were detected at a 95% confidence level. Notably, a significant negative trend of SFE/P at Daegwallyeong in February, the month of the WOG, was attributable to a larger decrease in SFE related to the increases in maximum and minimum temperature. Winter wet-day minimum temperatures were warmer than climatological minimum temperatures averaged over the study period. The 20-year return values of daily maximum P and SFE decreased in Yongdong area. Since the SFE/P decrease with increasing temperature, the probability of rainfall rather than snowfall can increase if global warming continues.

A Study on the Application of Modeling to predict the Distribution of Legally Protected Species Under Climate Change - A Case Study of Rodgersia podophylla - (기후변화에 따른 법정보호종 분포 예측을 위한 종분포모델 적용 방법 검토 - Rodgersia podophylla를 중심으로 -)

  • Yoo, Youngjae;Hwang, Jinhoo;Jeon, Seong-woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.3
    • /
    • pp.29-43
    • /
    • 2024
  • Legally protected species are one of the crucial considerations in the field of natural ecology when conducting environmental impact assessments (EIAs). The occurrence of legally protected species, especially 'Endangered Wildlife' designated by Ministry of Environment, significantly influences the progression of projects subject to EIA, necessitating clear investigations and presentations of their habitats. In perspective of statistics, a minimum of 30 occurrence coordinates is required for population prediction, but most of endangered wildlife has insufficient coordinates and it posing challenges for distribution prediction through modeling. Consequently, this study aims to propose modeling methodologies applicable when coordinate data are limited, focusing on Rodgersia podophylla, representing characteristics of endangered wildlife and northern plant species. For this methodology, 30 random sampling coordinates were used as input data, assuming little survey data, and modeling was performed using individual models included in BIOMOD2. After that, the modeling results were evaluated by using discrimination capacity and the reality reflection ability. An optimal modeling technique was proposed by ensemble the remaining models except for the MaxEnt model, which was found to be less reliable in the modeling results. Alongside discussions on discrimination capacity metrics(e.g. TSS and AUC) presented in modeling results, this study provides insights and suggestions for improvement, but it has limitations that it is difficult to use universally because it is not a study conducted on various species. By supporting survey site selection in EIA processes, this research is anticipated to contribute to minimizing situations where protected species are overlooked in survey results.

Climate change impact analysis on water supply reliability and flood risk using combined rainfall-runoff and reservoir operation modeling: Hapcheon-Dam catchment case (강우-유출 및 저수지 운영 연계 모의를 통한 기후변화의 이수안전도 및 홍수위험도 영향 분석: 합천댐 유역 사례)

  • Noh, Seong Jin;Lee, Garim;Kim, Bomi;Jo, Jihyeon;Woo, Dong Kook
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.765-774
    • /
    • 2023
  • Due to climatechange, precipitation variability has increased, leading to more frequentoccurrences of droughts and floods. To establish measures for managing waterresources in response to the increasing uncertainties of climate conditions, itis necessary to understand the variability of natural river discharge and theimpact of reservoir operation modeling considering dam inflow and artificialwater supply. In this study, an integrated rainfall-runoff and reservoiroperation modeling was applied to analyze the water supply reliability andflood risk for a multipurpose dam catchment under climate change conditions. Therainfall-runoff model employed was the modèle du Génie Rural à 4 paramètresJournalier (GR4J) model, and the reservoir operation model used was an R-basedmodel with the structure of HEC-Ressim. Applying the climate change scenariosuntil 2100 to the established integrated model, the changes in water supplyreliability and flood risk of the Happcheon Dam were quantitatively analyzed.The results of the water supply reliability analysis showed that under SSP2-4.5conditions, the water supply reliability was higher than that under SSP5-8.5conditions. Particularly, in the far-future period, the range of flood risk widened,and both SSP2-4.5 and SSP5-8.5 scenarios showed the highest median flood riskvalues. While precipitation and runoff were expected to increase by less than10%, dam-released flood discharge was projected to surge by over 120% comparedto the baseline

The Impact of Organizational Information Security Climate on Employees' Information Security Participation Behavior (조직의 정보보안 분위기가 조직 구성원의 정보보안 참여 행동에 미치는 영향)

  • Park, Jaeyoung;Kim, Beomsoo
    • The Journal of Information Systems
    • /
    • v.29 no.4
    • /
    • pp.57-76
    • /
    • 2020
  • Purpose Although examining the antecedents of employees' extra-role behavior (i.e. information security participation behavior) in the information security context is significant for researchers and practitioners, most behavioral security studies have focused on employees' in-role behavior (i.e. information security policy compliance). Thus, this research addresses this gap by investigating how organizational information security climate influences information security participation behavior based on social information processing theory and Griffin and Neal's safety model. Design/methodology/approach We developed a research model by applying Griffin and Neal's safety model to the information security context and then tested our research model by conducting an online survey for employees of organizations with information security policies. Structural equation modeling (SEM) with SmartPLS 3.3.2 is used to test the corresponding hypothesis. Findings Our results show that organizational information security climate, information security knowledge, information security motivation are effective in motivating information security participation behavior. Also, we find that organizational information security climate positively influences both information security knowledge and information security motivation. Our findings emphasize the importance of organizational information security climate because it is capable of affecting employees on information security participation behavior. Our study contributes to the literature on information security by exploring the role of organizational information security climate in enhancing employees' information security participation behavior.

Watershed Modeling for Assessing Climate Change Impact on Stream Water Quality of Chungju Dam Watershed (<2009 SWAT-KOREA 컨퍼런스 특별호 논문> 기후변화가 충주댐 유역의 하천수질에 미치는 영향평가를 위한 유역 모델링)

  • Park, Jong-Yoon;Park, Min-Ji;Ahn, So-Ra;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.877-889
    • /
    • 2009
  • This study is to assess the future potential impact of climate change on stream water quality for a 6,581.1 km$^2$ dam watershed using SWAT (Soil and Water Assessment Tool) model. The ECHAM5-OM climate data of IPCC (The Intergovernmental Panel on Climate Change) A2, A1B, and B1 emission scenarios were adopted and the future data (2007-2099) were corrected using 30 years (1977-2006, baseline period) weather data and downscaled by Change Factor (CF) method. After model calibration and validation using 6 years (1998-2003) observed daily streamflow and monthly water quality (SS, T-N, and T-P) data, the future (2020s, 2050s and 2080s) hydrological behavior and stream water quality were projected.

Insolation Modeling using Climate and Geo-Spatial Elements (기후요소와 지형 공간요소를 이용한 일사량 모델링)

  • Kim, Byung-Woo;Kang, In-Joon;Han, Ki-Bong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.79-86
    • /
    • 2010
  • This research is a thing about reverse operation about the solar power for location decision and increasing efficiency of the solar power generation equipments. The purpose of this research is reverse operation about the amount of sunshine using the climate and spatial elements. Following the result of correlation analysis, the wind-speed and cloud-amount factor are excluded, because the correlation and significance coefficients are out of value. Each outcome of regression analysis using the other four climate elements, and regression analysis using spatial elements is what the amount of sunshine and the solar altitude are the most influence to the insolation-modeling. Doing the regression analysis based on the precedent result make the result that climate elements have bigger coefficient of regression than spatial elements. This outcome means the climate elements are more influence than spatial elements.

Impact of Climate Change on the Groundwater Recharge and Groundwater Level Variations in Pyoseon Watershed of Jeju Island, Korea (기후 변화에 따른 제주도 표선 유역의 함양률 및 수위변화 예측)

  • Shin, Esther;Koh, Eun-Hee;Ha, Kyoochul;Lee, Eunhee;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.22-35
    • /
    • 2016
  • Global climate change could have an impact on hydrological process of a watershed and result in problems with future water supply by influencing the recharge process into the aquifer. This study aims to assess the change of groundwater recharge rate by climate change and to predict the sustainability of groundwater resource in Pyoseon watershed, Jeju Island. For the prediction, the groundwater recharge rate of the study area was estimated based on two future climate scenarios (RCP 4.5, RCP 8.5) by using the Soil Water Balance (SWB) computer code. The calculated groundwater recharge rate was used for groundwater flow simulation and the change of groundwater level according to the climate change was predicted using a numerical simulation program (FEFLOW 6.1). The average recharge rate from 2020 to 2100 was predicted to decrease by 10~12% compared to the current situation (1990~2015) while the evapotranspiration and the direct runoff rate would increase at both climate scenarios. The decrease in groundwater recharge rate due to the climate change results in the decline of groundwater level. In some monitoring wells, the predicted mean groundwater level at the year of the lowest water level was estimated to be lower by 60~70 m than the current situation. The model also predicted that temporal fluctuation of groundwater recharge, runoff and evapotranspiration would become more severe as a result of climate change, making the sustainable management of water resource more challenging in the future. Our study results demonstrate that the future availability of water resources highly depends on climate change. Thus, intensive studies on climate changes and water resources should be performed based on the sufficient data, advanced climate change scenarios, and improved modeling methodology.