DOI QR코드

DOI QR Code

Watershed Modeling for Assessing Climate Change Impact on Stream Water Quality of Chungju Dam Watershed

<2009 SWAT-KOREA 컨퍼런스 특별호 논문> 기후변화가 충주댐 유역의 하천수질에 미치는 영향평가를 위한 유역 모델링

  • Park, Jong-Yoon (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Park, Min-Ji (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Ahn, So-Ra (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Kim, Seong-Joon (Dept. of Civil and Environmental System Engineering, Konkuk University)
  • 박종윤 (건국대학교 대학원 사회환경시스템공학과) ;
  • 박민지 (건국대학교 대학원 사회환경시스템공학과) ;
  • 안소라 (건국대학교 대학원 사회환경시스템공학과) ;
  • 김성준 (건국대학교 생명환경과학대학 사회환경시스템공학)
  • Published : 2009.10.30

Abstract

This study is to assess the future potential impact of climate change on stream water quality for a 6,581.1 km$^2$ dam watershed using SWAT (Soil and Water Assessment Tool) model. The ECHAM5-OM climate data of IPCC (The Intergovernmental Panel on Climate Change) A2, A1B, and B1 emission scenarios were adopted and the future data (2007-2099) were corrected using 30 years (1977-2006, baseline period) weather data and downscaled by Change Factor (CF) method. After model calibration and validation using 6 years (1998-2003) observed daily streamflow and monthly water quality (SS, T-N, and T-P) data, the future (2020s, 2050s and 2080s) hydrological behavior and stream water quality were projected.

본 연구에서는 SWAT(Soil and Water Assessment Tool) 모형을 이용하여 미래 기후변화가 충주댐 유역(6,585.1 km$^2$)의 하천수질에 미치는 영향을 분석하고자 하였다. 미래 기상자료는 IPCC에서 제공하는 A2, A1B, B1 배출시나리오를 포함하는 ECHAM5-OM 모형의 결과를 과거 30년(1977-2006, baseline period) 기후자료를 바탕으로 편이보정(bias correction)과 Change Factor Method로 Downscaling 하였다. 6년(1998-2003) 동안의 일별 유출량 및 월별 수질(SS, T-N, T-P) 자료를 이용하여 모형의 보정 및 검증을 실시한 후, Downscaling된 ECHAM5-OM의 A2, A1B, B1 시나리오에 대해 2020s, 2050s, 2080s로 대별되는 미래의 수문학적 거동 변화 및 하천수질 변화를 전망하였다.

Keywords

References

  1. 김철겸, 이정은, 김남원 (2007). "충주댐 상류유역의 유사 발생에 대한 시공간적인 특성." 대한토목학회논문집, 대한토목학회, 제40권, 제11호, pp. 887-898.
  2. 박근애 (2008). 미래 기후변화가 농업수자원에 미치는 영향 연구. 박사학위논문, 건국대학교, pp. 68-89.
  3. 박종윤 (2009). SWAT 모형을 이용한 미래 기후변화가 수문학적 거동 및 하천수질에 미치는 영향 평가. 석사학위논문, 건국대학교, pp. 1-4.
  4. 박종윤, 이미선, 이용준, 김성준 (2008). "SWAT 모형을 이용한 미래 토지이용변화가 수문-수질에 미치는 영향 분석." 대한토목학회논문집, 대한토목학회, 제28권, 제2B호, pp. 187-197.
  5. 배덕효, 정일원 (2005). "기후변화에 따른 수자원 영향 평가." 방재정보, 한국방재협회, 제21호, pp. 16-22.
  6. 배덕효, 정일원, 권원태 (2007). "수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(Ⅰ): 유역별 기후시나리오 구축." 한국수자원학회논문집, 한국수자원학회, 제40권, 제3호, pp. 191-204. https://doi.org/10.3741/JKWRA.2007.40.3.191
  7. 안소라, 박민지, 박근애, 김성준 (2009). "기후변화가 경안천 유역의 수문요소에 미치는 영향 평가." 한국수자원학회논문집, 한국수자원학회, 제42권, 제1호, pp. 33-50. https://doi.org/10.3741/JKWRA.2009.42.1.33
  8. 안소라, 이용준, 박근애, 김성준 (2008). "미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석." 대한토목학회논문집, 대한토목학회, 제28권, 제2B호, pp. 215-224.
  9. 안재현, 유철상, 윤용남 (2001). "GCM 결과를 이용한 지구온난화에 따른 대청댐 유역의 수문환경 변화 분석." 한국수자원학회논문집, 한국수자원학회, 제34권, 제4호, pp. 335-345.
  10. 유철상, 이동률 (2000). "기후변화와 수자원: 국내의 연구동향." 한국수자원학회논문집, 한국수자원학회, 제33권, 제3호, pp. 42-47.
  11. 정일원, 배덕효, 임은순 (2007). "수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(Ⅱ): 유역별 기후시나리오 구축." 한국수자원학회논문집, 한국수자원학회, 제40권, 제3호, pp. 205-214. https://doi.org/10.3741/JKWRA.2007.40.3.191
  12. 한국수자원공사 (2003). 다목적댐 운영실무편람.
  13. Alcamo, J., Doll, P., Kaspar, F., and Siebert, S. (1997). Global change and global scenarios of water use and availability: An application of WaterGAP1.0. Report A9701, Center for Environmental Systems Research, University of Kassel, Germany.
  14. Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Williams, J.R. (1998). Large area hydrologic modeling and assessment part I: model development. Journal of American Water Resources Association, JAWRA, Vol. 34, No. 1, pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  15. Brown, L.C., and Barnell, T.O. Jr. (1987). The enhanced water quality models QUAL2E and QUAL2E-UNCAS documentation and user manual. EPA document EPA/600/3-87/007, USEPA, Athens, GA.
  16. Carter, T.R., Hulme, M., and Lal, M. (1999). IPCC-TGCIA Guidelines on the use of scenario data for climate impact and adaptation assessment, version 1, IPCC, Task Group on Scenarios for Impact Assessment.
  17. Diaz-Nieto, J., and Wilby, R.L. (2005). A comparison of statistical downscaling and climate change factor methods impacts on low flows in the River Thames. Climatic Change, Vol. 69, pp. 245-268. https://doi.org/10.1007/s10584-005-1157-6
  18. IPCC. (2007). Climate Change 2007: The Physical Science Basis, IPCC Contribution of Working Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  19. Nash, J.E., and Sutcliffe, J.E. (1970). River flow forecasting through conceptual models, Part I-A discussion of principles. Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  20. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2001). Soil and Water Assessment Tool User's Manual Version 2000. Texas Water Resources Institute, College Station, Texas.
  21. Saxton, K.E., Rawls, W.J., Romberger, J.S., and Papendick, R.I. (1986). Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, Vol. 50, No. 4, pp. 1031-1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x
  22. Soil Survey Staff (1996). National Soil Survey Handbook. title 430-VI, USDA Natural Resources Conservation Service, U.S. Government Printing Office, Washington, D.C.
  23. Viner, D., and Mayer, L., (1994). Climate Change Scenarios of Impact Studies in the UK. Report, Contract No PECD 7/12/96, CRU, Norwich, University of East Anglia.
  24. Wilby, R.L., and Harris, I. (2006). A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames. Water Resources Research, Vol. 42, pp. 1-10. https://doi.org/10.1029/2005WR004065
  25. Williams, J.R. (1975). Sediment-yield prediction with universal equation using runoff energy factor. In present and prospective technology for predicting sediment yield and sources, ARS-S-40, USDA-ARS.
  26. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Roky Mountains. Agriculture Handbook 282, USDA-ARS.
  27. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Agriculture Handbook 282, USDA-ARS.
  28. Zhang, X., Srinivassan, R., and Hao, F. (2007). "Predicting Hydrologic response to climate change in the Luohe river basin using the SWAT model." American Society of Agricultural and Biological Engineers, ASABE, Vol. 50, No. 3, pp. 901-910.

Cited by

  1. Assessing Future Climate Change Impact on Hydrologic and Water Quality Components in Nakdong River Basin vol.45, pp.11, 2012, https://doi.org/10.3741/JKWRA.2012.45.11.1121
  2. Assessment of Climate Change Impact on Storage Behavior of Chungju and the Regulation Dams Using SWAT Model vol.46, pp.12, 2013, https://doi.org/10.3741/JKWRA.2013.46.12.1235
  3. Numerical Simulation of Groundwater System Change in a Riverside Area due to the Construction of an Artificial Structure vol.22, pp.3, 2012, https://doi.org/10.9720/kseg.2012.3.263
  4. Improvement of Stream Water Quality by Applying Best Management Practices to Chungjudam Watershed using SWAT Model vol.54, pp.1, 2012, https://doi.org/10.5389/KSAE.2012.54.1.055
  5. Effect of Climate Change on Water Quality in Seonakdong River Experimental Catchment vol.27, pp.2, 2013, https://doi.org/10.11001/jksww.2013.27.2.197
  6. Evaluation of Suspended Solids and Eutrophication in Chungju Lake Using CE-QUAL-W2 vol.46, pp.11, 2013, https://doi.org/10.3741/JKWRA.2013.46.11.1115
  7. Assessment of Climate Change Impacts on Hydrology and Snowmelt by Applying RCP Scenarios using SWAT Model for Hanriver Watersheds vol.55, pp.5, 2013, https://doi.org/10.5389/KSAE.2013.55.5.037
  8. The relative impacts of climate change and urbanization on the hydrological response of a Korean urban watershed vol.25, pp.4, 2011, https://doi.org/10.1002/hyp.7781
  9. Assessing Climate Change Impact on Hydrological Components of Yongdam Dam Watershed Using RCP Emission Scenarios and SWAT Model vol.56, pp.3, 2014, https://doi.org/10.5389/KSAE.2014.56.3.019
  10. A case study for ANN-based rainfall–runoff model considering antecedent soil moisture conditions in Imha Dam watershed, Korea vol.74, pp.2, 2015, https://doi.org/10.1007/s12665-015-4117-0
  11. Effect of Climate Change on Fish Habitat in the Nakdong River Watershed vol.46, pp.1, 2013, https://doi.org/10.3741/JKWRA.2013.46.1.1
  12. Assessment of Climate Change Impact on Evapotranspiration and Soil Moisture in a Mixed Forest Catchment Using Spatially Calibrated SWAT Model vol.46, pp.6, 2013, https://doi.org/10.3741/JKWRA.2013.46.6.569
  13. Effect of Straw Mulch on Runoff and NPS Pollution Reduction from Experimental Plots under a Climate Change Scenario in Korea vol.141, pp.8, 2015, https://doi.org/10.1061/(ASCE)IR.1943-4774.0000862
  14. Evaluation of SWAT Model Applicability for Runoff Estimation in Nam River Dam Watershed vol.58, pp.4, 2016, https://doi.org/10.5389/KSAE.2016.58.4.009
  15. Analysis on flood frequency and water quality variations induced by abnormal climate vol.53, pp.9, 2015, https://doi.org/10.1080/19443994.2014.928771
  16. Nn Evaluation of Climate Change Effects on Pollution Loads of the Hwangryong River Watershed in Korea vol.48, pp.3, 2015, https://doi.org/10.3741/JKWRA.2015.48.3.185
  17. Analysis of Rainfall-Runoff Characteristics on Bias Correction Method of Climate Change Scenarios vol.31, pp.3, 2015, https://doi.org/10.15681/KSWE.2015.31.3.241
  18. Development of spatial water resources vulnerability index considering climate change impacts vol.409, pp.24, 2011, https://doi.org/10.1016/j.scitotenv.2011.08.027
  19. Hydrologic and Water Quality Responses to Precipitation Extremes in Nakdong River Basin vol.45, pp.11, 2012, https://doi.org/10.3741/JKWRA.2012.45.11.1081
  20. Projecting Future Climate Change Scenarios Using Three Bias-Correction Methods vol.2014, 2014, https://doi.org/10.1155/2014/704151