DOI QR코드

DOI QR Code

A Study on the Application of Modeling to predict the Distribution of Legally Protected Species Under Climate Change - A Case Study of Rodgersia podophylla -

기후변화에 따른 법정보호종 분포 예측을 위한 종분포모델 적용 방법 검토 - Rodgersia podophylla를 중심으로 -

  • Yoo, Youngjae (Ojeong Resilience Institute, Korea University) ;
  • Hwang, Jinhoo (Ojeong Resilience Institute, Korea University) ;
  • Jeon, Seong-woo (Division of Environmental Science & Ecological Engineering, Korea University)
  • 유영재 (고려대학교 오정리질리언스연구원) ;
  • 황진후 (고려대학교 오정리질리언스연구원) ;
  • 전성우 (고려대학교 환경생태공학부)
  • Received : 2024.03.27
  • Accepted : 2024.06.03
  • Published : 2024.06.30

Abstract

Legally protected species are one of the crucial considerations in the field of natural ecology when conducting environmental impact assessments (EIAs). The occurrence of legally protected species, especially 'Endangered Wildlife' designated by Ministry of Environment, significantly influences the progression of projects subject to EIA, necessitating clear investigations and presentations of their habitats. In perspective of statistics, a minimum of 30 occurrence coordinates is required for population prediction, but most of endangered wildlife has insufficient coordinates and it posing challenges for distribution prediction through modeling. Consequently, this study aims to propose modeling methodologies applicable when coordinate data are limited, focusing on Rodgersia podophylla, representing characteristics of endangered wildlife and northern plant species. For this methodology, 30 random sampling coordinates were used as input data, assuming little survey data, and modeling was performed using individual models included in BIOMOD2. After that, the modeling results were evaluated by using discrimination capacity and the reality reflection ability. An optimal modeling technique was proposed by ensemble the remaining models except for the MaxEnt model, which was found to be less reliable in the modeling results. Alongside discussions on discrimination capacity metrics(e.g. TSS and AUC) presented in modeling results, this study provides insights and suggestions for improvement, but it has limitations that it is difficult to use universally because it is not a study conducted on various species. By supporting survey site selection in EIA processes, this research is anticipated to contribute to minimizing situations where protected species are overlooked in survey results.

Keywords

Acknowledgement

본 연구는 환경부의 재원으로 한국환경산업기술원의 ICT기반 환경영향평가 의사결정 지원 기술개발사업의 지원을 받아 연구되었습니다.(2020002990009)

References

  1. Abramovich, F. & Bayvel, P. (1997). Some statistical remarks on the derivation of BER in amplified optical communication systems. IEEE Transactions on Communications, 45(9), 1032-1034. https://doi.org/10.1109/26.623065
  2. Allouche O..Tsoar A. & Kadmon R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223-1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
  3. Araujo M. B. & New M. 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1), 42-47. https://doi.org/10.1016/j.tree.2006.09.010
  4. Ash A. & Shwartz M. 1999. R2: a useful measure of model performance when predicting a dichotomous outcome. Statistics in Medicine, 18(4), 375-384. https://doi.org/10.1002/(SICI)1097-0258(19990228)18:4<375::AID-SIM20>3.0.CO;2-J
  5. Baldwin R. A. 2009. Use of Maximum Entropy Modeling in Wildlife Research. Entropy, 11(4), 854-866. https://www.mdpi.com/1099-4300/11/4/854 1099-4300/11/4/854
  6. Buechling, A. & Tobalske, C. 2011. Predictive Habitat Modeling of Rare Plant Species in Pacific Northwest Forests. Western Journal of Applied Forestry, 26(2), 71-81. https://doi.org/10.1093/wjaf/26.2.71
  7. Chapman D..Pescott O. L..Roy H. E. & Tanner R. 2019. Improving species distribution models for invasive non-native species with biologically informed pseudo-absence selection. Journal of Biogeography, 46(5), 1029-1040. https://doi.org/10.1111/jbi.13555
  8. Chicago Botanic Garden. 2016. A Comparative Trial Report on Rodgersias and Astilboides 
  9. Crimmins S. M..Dobrowski S. Z. & Mynsberge A. R. 2013. Evaluating ensemble forecasts of plant species distributions under climate change. Ecological Modelling, 266, 126-130. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2013.07.006
  10. De Marco P. J. & Nobrega C. C. 2018. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLOS ONE, 13(9), e0202403. https://doi.org/10.1371/journal.pone.0202403
  11. Do MS.Lee JW.Jang HJ.Kim DI.Park JW & Yoo JC. 2017. Spatial Distribution Patterns and Prediction of Hotspot Area for Endangered Herpetofauna Species in Korea. Korean Journal of Environment and Ecology, 31(4), 381-396. https://doi.org/10.13047/KJEE.2017.31.4.381
  12. Dormann C. F..Elith J..Bacher S..Buchmann C..Carl G..Carre G..Marquez J. R. G..Gruber B..Lafourcade B..Leitao P. J..Munkemuller T..McClean C..Osborne P. E..Reineking B..Schroder B..Skidmore A. K..Zurell D. & Lautenbach S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27-46. /https://doi.org/10.1111/j.1600-0587.2012.07348.x
  13. Fernandes R. F..Scherrer D. & Guisan A. 2019. Effects of simulated observation errors on the performance of species distribution models. Diversity and Distributions, 25(3), 400-413. https://doi.org/10.1111/ddi.12868
  14. Fortin M.J..Drapeau P. & Legendre P. 1990. Spatial autocorrelation and sampling design in plant ecology. In Progress in theoretical vegetation science. 209-222. Springer.
  15. Franklin J..Wejnert K. E.Hathaway S. A..Rochester C. J. & Fisher R. N. 2009. Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. Diversity and Distributions, 15(1), 167-177. https://doi.org/10.1111/j.1472-4642.2008.00536.x
  16. Gao X..Liu J. & Huang Z. 2022. The impact of climate change on the distribution of rare and endangered tree Firmiana kwangsiensis using the Maxent modeling. Ecology and Evolution, 12(8), e9165. https://doi.org/10.1002/ece3.9165
  17. Gogol-Prokurat M. 2011. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model. Ecological Applications, 21(1), 33-47. https://doi.org/10.1890/09-1190.1
  18. Haining R. 1990. Spatial Data Analysis in the Social and Environmental Sciences. Cambridge University Press. https://doi.org/10.1017/CBO9780511623356
  19. Hao T..Elith J..Lahoz-Monfort J. J. & Guillera-Arroita G. 2020. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography, 43(4), 549-558. https://doi.org/10.1111/ecog.04890
  20. Hernandez P. A..Graham C. H..Master L. L. & Albert D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773-785.
  21. Jimenez-Valverde A. 2012. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography, 21(4), 498-507. https://doi.org/10.1111/j.1466-8238.2011.00683.x
  22. Johnson S..Molano-Flores B. & Zaya D. 2023. Field validation as a tool for mitigating uncertainty in species distribution modeling for conservation planning. Conservation Science and Practice, 5(8), e12978. https://doi.org/10.1111/csp2.12978
  23. Jung JB.Park GE.Kim HJ.Huh JH & Um YR. 2023. Predicting the Habitat Suitability for Angelica gigas Medicinal Herb Using an Ensemble Species Distribution Model. Forests, 14(3), 592. https://doi.org/10.3390/f14030592
  24. Kim, CY.Kim, WM.Song, WK & Choi, JY. 2022. A study on the range of native seed habitat analysis using Seedzones and MaxEnt. Journal of the Korean Society of Environmental Restoration Technology, 25(1), 57-74. https://doi.org/10.13087/KOSERT.2022.25.1.57
  25. Kim, TG.Yang, DH.Cho, YH.Song, KH & Oh, JG. 2016. Habitat Distribution Change Prediction of Asiatic Black Bears (Ursus thibetanus) Using Maxent Modeling Approach. Korean Journal of Ecology and Environment. Korean Society of Limnology. https://doi.org/10.11614/ksl.2016.49.3.197
  26. Korea Environment Institute. 2006. A plan to introduce biodiversity components in environmental assessment
  27. Korea Forest Service & Korea National Arboretum. 2010. 300 Target Plats Adaptable to Climate Change in the Korean Peninsula. Korea forest service, Republic of Korea
  28. Korea National Arboretum. 2015. Guide for propagataion and cultivation of useful resource palnts
  29. Lee YH.Oh YJ.Hong SH.Na CS.Na YE.Kim CS & Sohn SI. 2015. Predicting the suitable habitat of invasive alien plant Conyza bonariensis based on climate change scenarios. Journal of Climate Change Research, 6(3), 243-248.
  30. Lobo J. M..Jimenez-Valverde A. & Real R. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145-151. https://doi.org/10.1111/j.1466-8238.2007.00358.x
  31. Marmion M..Parviainen M..Luoto M..Heikkinen R. K. & Thuiller W. 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, 15(1), 59-69. https://doi.org/10.1111/j.1472-4642.2008.00491.x
  32. Miller J. A. 2012. Species distribution models:Spatial autocorrelation and non-stationarity. Progress in Physical Geography: Earth and Environment, 36(5), 681-692. https://doi.org/10.1177/0309133312442522
  33. Ministry of Environment. 2011. A study on the preparation of guidelines for the creation of alternative habitats for major species in conducting environmental impact assessment
  34. Ministry of Environment. 2023. Guide to the Preparation, etc. of Environmental Impact Assessment Report, etc.
  35. Park JM.Seo HS & Lee JS. 2011. A Study on the Spatial and Environmental Characteristics of Forest Biology using GIS: A Case Study of Baekdudaegan area, Gyeongsangbuk-do and Chungcheongbuk-do. Journal of forest and environmental science, 27(3), 169-181.
  36. Pearce J. & Ferrier S. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133(3), 225-245. https://doi.org/10.1016/S0304-3800(00)00322-7
  37. Pearce J. & Ferrier S. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133(3), 225-245. https://doi.org/10.1016/S0304-3800(00)00322-7
  38. Peterson A. T..Pape M. & Soberon J. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63-72. https://doi.org/10.1016/j.ecolmodel.2007.11.008
  39. Qin A..Liu B..Guo Q..Bussmann R. W..Ma F..Jian Z..Xu G. & Pei S. 2017. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch.an extremely endangered conifer from southwestern China. Global Ecology and Conservation, 10, 139-146. https://doi.org/10.1016/j.gecco.2017.02.004
  40. Song, WK & Kim, EY. 2012. A Comparison of Machine Learning Species Distribution Methods for Habitat Analysis of the Korea Water Deer (Hydropotes inermis argyropus). Korean Journal of Remote Sensing, 28(1), 171-180. https://doi.org/10.7780/KJRS.2012.28.1.171
  41. Stockwell D. R. B. & Peterson A. T. (2002). Effects of sample size on accuracy of species distribution models. Ecological Modelling, 148(1), 1-13. https://doi.org/10.1016/S0304-3800(01)00388-X
  42. Williams J. N..Seo CW.Thorne J..Nelson J. K..Erwin S..O'Brien J. M. & Schwartz M. W. 2009. Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions, 15(4), 565-576. https://doi.org/10.1111/j.1472-4642.2009.00567.x
  43. Wonju Regional Environment Office. 2014. Endangered wildlife (land plants) status data for verification of the natural ecological environment field of Environmental impact assessment report
  44. Yoon YS.Kim KA & Yoo KO. 2015. Environmental Characteristics of Astilboides tabularis (Hemsl.) Engl. Habitats. Korean Journal of Plant Resources, 28(1), 64-78.