• 제목/요약/키워드: climate change scenarios

Search Result 680, Processing Time 0.027 seconds

Applying deep learning based super-resolution technique for high-resolution urban flood analysis (고해상도 도시 침수 해석을 위한 딥러닝 기반 초해상화 기술 적용)

  • Choi, Hyeonjin;Lee, Songhee;Woo, Hyuna;Kim, Minyoung;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.641-653
    • /
    • 2023
  • As climate change and urbanization are causing unprecedented natural disasters in urban areas, it is crucial to have urban flood predictions with high fidelity and accuracy. However, conventional physically- and deep learning-based urban flood modeling methods have limitations that require a lot of computer resources or data for high-resolution flooding analysis. In this study, we propose and implement a method for improving the spatial resolution of urban flood analysis using a deep learning based super-resolution technique. The proposed approach converts low-resolution flood maps by physically based modeling into the high-resolution using a super-resolution deep learning model trained by high-resolution modeling data. When applied to two cases of retrospective flood analysis at part of City of Portland, Oregon, U.S., the results of the 4-m resolution physical simulation were successfully converted into 1-m resolution flood maps through super-resolution. High structural similarity between the super-solution image and the high-resolution original was found. The results show promising image quality loss within an acceptable limit of 22.80 dB (PSNR) and 0.73 (SSIM). The proposed super-resolution method can provide efficient model training with a limited number of flood scenarios, significantly reducing data acquisition efforts and computational costs.

Game Theory Application in Wetland Conservation Across Various Hypothetical City Sizes (다양한 이론적 도시규모에서의 습지 보전을 위한 게임 이론 적용)

  • Ran-Young Im;Ji Yoon Kim;Yuno Do
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.10-20
    • /
    • 2024
  • The conservation and restoration of wetlands are essential tasks for the sustainable development of human society and the environment, providing vital benefits such as biodiversity maintenance, natural disaster mitigation, and climate change alleviation. This study aims to analyze the strategic interactions and interests among various stakeholders using game theory and to provide significant grounds for policy decisions related to wetland restoration and development. In this study, hypothetical scenarios were set up for three types of cities: large, medium, and small. Stakeholders such as governments, development companies, environmental groups, and local residents were identified. Strategic options for each stakeholder were developed, and a payoff matrix was established through discussions among wetland ecology experts. Subsequently, non-cooperative game theory was applied to analyze Nash equilibria and Pareto efficiency. In large cities, strategies of 'Wetland Conservation' and 'Eco-Friendly Development' were found beneficial for all stakeholders. In medium cities, various strategies were identified, while in small cities, 'Eco-Friendly Development' emerged as the optimal solution for all parties involved. The Pareto efficiency analysis revealed how the optimal solutions for wetland management could vary across different city types. The study highlighted the importance of wetland conservation, eco-friendly development, and wetland restoration projects for each city type. Accordingly, policymakers should establish regulations and incentives that harmonize environmental protection and urban development and consider programs that promote community participation. Understanding the roles and strategies of stakeholders and the advantages and disadvantages of each strategy is crucial for making more effective policy decisions.

Analysis of Damage Impact Range according to the NG/NH3 Mixing Ratio when applying Ammonia as Fuel for a Combined Cycle Power Plant using an ALOHA Program (ALOHA 프로그램을 활용한 복합화력발전소 내 암모니아 연료 적용 시 NG/NH3 혼소율에 따른 피해영향범위 분석)

  • Yoo Jeong Choi;Hee Kyung Park;Min Chul Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • In this study, a quantitative risk impact assessment is performed using an ALOHA program to identify the risks when applying ammonia as fuel for combined cycle power plants as one of the solutions of climate change. The worst and the alternative accident scenarios are established for the Sejong combined cycle power plant and the effective ranges are calculated in terms of flammability, thermal radiation, overpressure and toxicity. The analysis results show that the toxic risk is the most critical and the effective distance is highly proportional to the mixing ratio of natural gas and ammonia by showing the Pearson's correlation coefficient over 98% as 0.991, 0.987 and 0.989 for the Level Of Concern(LOC)-1, LOC-2 and LOC-3, respectively. In addition, the coefficients of linearity for LOC-1, LOC-2 and LOC-3 are calculated to 133, 70 and 29, respectively so it can be confirmed that the effective distance increases as the criterion decreases.

Assessments of Negotiation Options Regarding Post-2012 Rules for Land Use, Land-Use Change and Forestry (LULUCF) -With a Focus on the Forest Management Activities under the Kyoto Protocol - (Post-2012 LULUCF 협상 대안 평가 -산림경영 활동을 중심으로 -)

  • Bae, Jae-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.55-65
    • /
    • 2009
  • Annex I parties continued its consideration of how to address, the definitions, modalities, rules and guidelines for the treatment of Land Use, Land-use Change and Forestry (LULUCF) in the second commitment period of the Kyoto Protocol by the year of 2009. In the AWG-KP conference held in Accra, Ghana in 2008, four alternatives (gross-net carbon accounting, net-net with base year or base period accounting, net-net with forward looking baseline accounting, and land-based accounting method) for negotiations were decided in order to revise gross-net accounting method applied during the first commitment period of the Kyoto Protocol. In this study, alternative scenarios are set in consideration with reporting system (voluntary or compulsory), discount factors and cap about these three alternatives except for the method of net-net with forward looking baseline accounting, and then estimates the Removal Unit (RMU) among the countries. In the case that article 3.4 activities under the Kyoto Protocol revises from voluntary reporting to mandatory reporting, it is estimated that the loss of RMU would be huge in Russia, Australia, New Zealand, as well as Canada potentially. Net-net with base year or base period carbon accounting and land-based carbon accounting method have big difference of RMU in accordance with the base year or the base period. So the more unfavorable the country with a lot of old-age forests was, the closer the base year or period comes to the commitment period in the context of RMU. If it is getting lowered for the current rate of 85% in discount factors, RMU is getting higher to the whole countries. Therefore in Korea with little potential for afforestation and reforestation, there was the most sensitive response to the change of discount factors. Post-2012 LULUCF hereafter, it is strongly expected for the succession of current carbon accounting system which is voluntary reporting of gross-net carbon accounting and the activity for article 3.4. Other carbon accounting method is hard to accept in aspect that there is big differentiated interests among the countries and it is required enormous cost and time to develop reliable method. Provide for Post-2012 mandatory greenhouse gas reduction, Korea needs to have a competitive negotiation strategies differentiated from Annex I countries. The most reliable alternative would be to lower the discounting factors about the activities for forest management.

Hydraulic Stability Examination of Rainwater Reservoir Pipe Network System on Various Inflow Conditions (유입량 변화에 따른 도심지 내 우수저류조 관망시스템의 안정성 검토)

  • Yoo, Hyung Ju;Kim, Dong Hyun;Maeng, Seung Jin;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.1-13
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, it is necessary to install the facilities that can cope with the initial stormwater. Most researches have been conducted on the design of facilities applying the Low Impact Development (LID) and the reduction effect on rainfall runoff to examine with 1D or 2D numerical models. However, the studies on the examination about flow characteristics and stability of pipe network systems were relatively insufficient in the literature. In this study, the stability of the pipe network system in rainwater storage tank was examined by using 3D numerical model, FLOW-3D. The changes of velocity and dynamic pressure were examined according to the number of rainwater storage tank and compared with the design criteria to derive the optimal design plan for a rainwater storage tank. As a results of numerical simulation with the design values in the previous study, it was confirmed that the velocity became increased as the number of rainwater storage tank increased. And magnitude of the velocity in pipes was formed within the design criteria. However, the velocity in the additional rainwater storage pipe was about 3.44 m/s exceeding the allowable range of the design criteria, when three or more additional rainwater storage tanks were installed. In the case of turbulence intensity and bottom shear stress, the bottom shear stress was larger than the critical shear stress as the additional rainwater storage was increased. So, the deposition of sediment was unlikely to occur, but it should be considered that the floc was formed by the reduction of the turbulence intensity. In addition, the dynamic pressure was also satisfied with the design criteria when the results were compared with the allowable internal pressure of the pipes generally used in the design of rainwater storage tank. Based on these results, it was suitable to install up to two additional rainwater storage tanks because the drainage becomes well when increasing of the number of storage tank and the velocity in the pipe becomes faster to be vulnerable to damage the pipe. However, this study has a assumption about the specifications of the rainwater storage tanks and the inflow of stormwater and has a limitation such that deriving the suitable rainwater storage tank design by simply adding the storage tank. Therefore, the various storage tank types and stormwater inflow scenarios will be asked to derive more efficient design plans in the future.

Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear (신고 배의 개화기 결정에 미치는 온도영향의 정량화)

  • Kim, Soo-Ock;Kim, Jin-Hee;Chung, U-Ran;Kim, Seung-Heui;Park, Gun-Hwan;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.61-71
    • /
    • 2009
  • Most deciduous trees in temperate zone are dormant during the winter to overcome cold and dry environment. Dormancy of deciduous fruit trees is usually separated into a period of rest by physiological conditions and a period of quiescence by unfavorable environmental conditions. Inconsistent and fewer budburst in pear orchards has been reported recently in South Korea and Japan and the insufficient chilling due to warmer winters is suspected to play a role. An accurate prediction of the flowering time under the climate change scenarios may be critical to the planning of adaptation strategy for the pear industry in the future. However, existing methods for the prediction of budburst depend on the spring temperature, neglecting potential effects of warmer winters on the rest release and subsequent budburst. We adapted a dormancy clock model which uses daily temperature data to calculate the thermal time for simulating winter phenology of deciduous trees and tested the feasibility of this model in predicting budburst and flowering of Niitaka pear, one of the favorite cultivars in Korea. In order to derive the model parameter values suitable for Niitaka, the mean time for the rest release was estimated by observing budburst of field collected twigs in a controlled environment. The thermal time (in chill-days) was calculated and accumulated by a predefined temperature range from fall harvest until the chilling requirement (maximum accumulated chill-days in a negative number) is met. The chilling requirement is then offset by anti-chill days (in positive numbers) until the accumulated chill-days become null, which is assumed to be the budburst date. Calculations were repeated with arbitrary threshold temperatures from $4^{\circ}C$ to $10^{\circ}C$ (at an interval of 0.1), and a set of threshold temperature and chilling requirement was selected when the estimated budburst date coincides with the field observation. A heating requirement (in accumulation of anti-chill days since budburst) for flowering was also determined from an experiment based on historical observations. The dormancy clock model optimized with the selected parameter values was used to predict flowering of Niitaka pear grown in Suwon for the recent 9 years. The predicted dates for full bloom were within the range of the observed dates with 1.9 days of root mean square error.

Evaluation of Disaster Resilience Scorecard for the UN International Safety City Certification of Incheon Metropolitan City (인천시 UN 국제안전도시 인증을 위한 재난 복원력 스코어카드 평가)

  • Kim, Yong-Moon;Lee, Tae-Shik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.1
    • /
    • pp.59-75
    • /
    • 2020
  • This study is a case study that applied 'UNDRR's Urban Disaster Resilience Scorecard', an evaluation tool necessary for Incheon Metropolitan City to be certified as an international safe city. I would like to present an example that the results derived from this scorecard contributed to the Incheon Metropolitan City Disaster Reduction Plan. Of course, the Disaster Resilience Scorecard can't provide a way to improve the resilience of every disaster facing the city. However, it is to find the weakness of the resilience that the city faces, and to propose a solution to reduce the city's disaster risk. This is to help practitioners to recognize the disaster risks that Incheon Metropolitan City faces. In addition, the solution recommended by UNDRR was suggested to provide resilience in areas vulnerable to disasters. It was confirmed that this process can contribute to improving the disaster resilience of Incheon Metropolitan City. UNDRR has been spreading 'Climate Change, Disaster-resistant City Creation Campaign', aka MCR (Making Cities Resilient) Campaign, to cities all over the world since 2010 to reduce global cities' disasters. By applying the disaster relief guidelines adopted by UNDRR, governments, local governments, and neighboring cities are encouraged to collaborate. As a result of this study, Incheon Metropolitan city's UN Urban Resilience Scorecard was evaluated as a strong resilience field by obtaining scores of 4 or more (4.3~5.0) in 5 of 10 essentials; 1. Prepare organization for disaster resilience and prepare for implementation, 4. Strong resilience Urban development and design pursuit, 5. Preservation of natural cushions to enhance the protection provided by natural ecosystems, 9. Ensure effective disaster preparedness and response, 10. Rapid restoration and better reconstruction. On the other hand, in the other five fields, scores of less than 4 (3.20~3.85) were obtained and evaluated as weak resilience field; 2. Analyze, understand and utilize current and future risk scenarios, 3. Strengthen financial capacity for resilience, 6. Strengthen institutional capacity for resilience, 7. Understanding and strengthening social competence for resilience, 8. Strengthen resilience of infrastructure. In addition, through this study, the risk factors faced by Incheon Metropolitan City could be identified by priority, resilience improvement measures to minimize disaster risks, urban safety-based urban development plans, available disaster reduction resources, and integrated disasters. Measures were prepared.

Evaluation of improvement effect on the spatial-temporal correction of several reference evapotranspiration methods (기준증발산량 산정방법들의 시공간적 보정에 대한 개선효과 평가)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.701-715
    • /
    • 2020
  • This study compared several reference evapotranspiration estimated using eight methods such as FAO-56 Penman-Monteith (FAO PM), Hamon, Hansen, Hargreaves-Samani, Jensen-Haise, Makkink, Priestley-Taylor, and Thornthwaite. In addition, by analyzing the monthly deviations of the results by the FAO PM and the remaining seven methods, monthly optimized correction coefficients were derived and the improvement effect was evaluated. These methods were applied to 73 automated synoptic observation system (ASOS) stations of the Korea Meteorological Administration, where the climatological data are available at least 20 years. As a result of evaluating the reference evapotranspiration by applying the default coefficients of each method, a large fluctuation happened depending on the method, and the Hansen method was relatively similar to FAO PM. However, the Hamon and Jensen-Haise methods showed more large values than other methods in summer, and the deviation from FAO PM method was also large significantly. When comparing based on the region, the comparison with FAO PM method provided that the reference evapotranspiration estimated by other methods was overestimated in most regions except for eastern coastal areas. Based on the deviation from the FAO PM method, the monthly correction coefficients were derived for each station. The monthly deviation average that ranged from -46 mm to +88 mm before correction was improved to -11 mm to +1 mm after correction, and the annual average deviation was also significantly reduced by correction from -393 mm to +354 mm (before correction) to -33 mm to +9 mm (after correction). In particular, Hamon, Hargreaves-Samani, and Thornthwaite methods using only temperature data also produced results that were not significantly different from FAO PM after correction. It can be also useful for forecasting long-term reference evapotranspiration using temperature data in climate change scenarios or predicting evapotranspiration using monthly or seasonal temperature forecasted values.

The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions (하류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토)

  • Yoo, Hyung Ju;Joo, Sung Sik;Kwon, Beom Jae;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.61-75
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.

Utilization of Smart Farms in Open-field Agriculture Based on Digital Twin (디지털 트윈 기반 노지스마트팜 활용방안)

  • Kim, Sukgu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.7-7
    • /
    • 2023
  • Currently, the main technologies of various fourth industries are big data, the Internet of Things, artificial intelligence, blockchain, mixed reality (MR), and drones. In particular, "digital twin," which has recently become a global technological trend, is a concept of a virtual model that is expressed equally in physical objects and computers. By creating and simulating a Digital twin of software-virtualized assets instead of real physical assets, accurate information about the characteristics of real farming (current state, agricultural productivity, agricultural work scenarios, etc.) can be obtained. This study aims to streamline agricultural work through automatic water management, remote growth forecasting, drone control, and pest forecasting through the operation of an integrated control system by constructing digital twin data on the main production area of the nojinot industry and designing and building a smart farm complex. In addition, it aims to distribute digital environmental control agriculture in Korea that can reduce labor and improve crop productivity by minimizing environmental load through the use of appropriate amounts of fertilizers and pesticides through big data analysis. These open-field agricultural technologies can reduce labor through digital farming and cultivation management, optimize water use and prevent soil pollution in preparation for climate change, and quantitative growth management of open-field crops by securing digital data for the national cultivation environment. It is also a way to directly implement carbon-neutral RED++ activities by improving agricultural productivity. The analysis and prediction of growth status through the acquisition of the acquired high-precision and high-definition image-based crop growth data are very effective in digital farming work management. The Southern Crop Department of the National Institute of Food Science conducted research and development on various types of open-field agricultural smart farms such as underground point and underground drainage. In particular, from this year, commercialization is underway in earnest through the establishment of smart farm facilities and technology distribution for agricultural technology complexes across the country. In this study, we would like to describe the case of establishing the agricultural field that combines digital twin technology and open-field agricultural smart farm technology and future utilization plans.

  • PDF