• Title/Summary/Keyword: climate change assessment

Search Result 1,029, Processing Time 0.032 seconds

Assessment of Co-benefit and Trade-off Effects of Nature-based Solutions on Carbon Storage Capacity and Biodiversity (자연기반해법의 탄소저장과 생물다양성의 공동·상쇄 효과 평가)

  • Kim, Da-seul;Lee, Dong-kun;Hwang, Heymee;Heo, Su-jeong;Yun, Seok-hwan;Kim, Eun-sub
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.1
    • /
    • pp.45-54
    • /
    • 2024
  • This study developed a model to evaluate the co-benefits and trade-off effects between biodiversity and carbon storage capacity based on the implementation locations of nature-based solutions. The model aims to propose optimal implementation locations by using the conceptual idea of edge effects for carbon storage and connectivity for biodiversity. The co-benefits were considered by simultaneously taking into account two effects rather than a single effect. Trade-off effects were observed among optimal plans through a comparison of benefits. The NSGA-II multi-objective optimization algorithm was utilized, confirming the identification of Pareto-optimal solutions. The implementation patterns of Pareto-optimal solutions for green areas were examined. This study holds significance in proposing optimal locations by evaluating various co-benefits and trade-off effects of nature-based solutions. By advancing models based on this evaluation framework, it is anticipated that the assessment of co-benefits and trade-off effects among various benefits of nature-based solutions, such as climate change mitigation, enhancement of biodiversity, and provision of ecosystem services, can be accomplished.

Vulnerability Assessment of the Air Pollution Using Entropy Weights : Focused on Ozone (엔트로피 가중치를 활용한 대기오염 취약성 평가 - 오존을 중심으로 -)

  • Lee, Sang-hyeok;Kang, Jung Eun;Bae, Hyun Joo;Yoon, Dong Keun
    • Journal of the Korean association of regional geographers
    • /
    • v.21 no.4
    • /
    • pp.751-763
    • /
    • 2015
  • Both the selection of indicators and weights for them are critical issues in the vulnerability assessment. This study is to assess the air pollution vulnerability focused on ozone for 249 local jurisdictions using weights calculated by the entropy methodology and then examine the applicability of the methodology. We selected indicators for air pollution vulnerability assessment and standardized them. Subsequently, we calculated weights of each indicator using the entropy method and then integrated them into the vulnerability index. The exposure indicators consider meteorological and air pollution factors and the sensitivity of the local jurisdiction include variables on vulnerable areas and environments. The adaptive capacity contains socio-economic characteristics, health care capacities and air pollution managemental factors. The results show that Hwaseong-si, Gwangjin-gu, Gimpo-si, Gwangju-si, Gunpo-si are among the highest vulnerabilities based on the simple aggregation of indicators. And vulnerability-resilience (VRI) aggregation results indicates the similar spatial pattern with the simple aggregation outcomes. This article extends current climate change vulnerability assessment studies by adopting the entropy method to evaluate relative usefulness of data. In addition, the results can be used for developing customized adaptation policies for each jurisdiction reflecting vulnerable aspects.

  • PDF

Health Risk Assessment by Exposure to Heavy Metals in PM2.5 in Ulsan Industrial Complex Area (울산 산단지역 PM2.5 중 중금속 노출에 의한 건강위해성평가)

  • Ji-Yun Jung;Hye-Won Lee;Si-Hyun Park;Jeong-Il Lee;Dan-Ki Yoon;Cheol-Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.108-117
    • /
    • 2023
  • Background: When particles are absorbed into the human body, they penetrate deep into the lungs and interact with the tissues of the body. Heavy metals in PM2.5 can cause various diseases. The main source of PM2.5 emissions in South Korea's atmosphere has been surveyed to be places of business. Objectives: The concentration of heavy metals in PM2.5 near the Ulsan Industrial Complex was measured and a health risk assessment was performed for residents near the industrial complex for exposure to heavy metals in PM2.5. Methods: Concentrations of heavy metals in PM2.5 were measured at four measurement sites (Ulsan, Mipo, Onsan, Maegok) near the industrial complexes. Heavy metals were analyzed according to the Air Pollution Monitoring Network Installation and Operation Guidelines presented by the National Institute of Environmental Research. Among them, only five substances (Mn, Ni, As, Cd, Cr6+) were targeted. The risk assessment was conducted on inhalation exposure for five age groups, and the excess cancer risk and hazard quotient were calculated. Results: In the risk assessment of exposure to heavy metals in PM2.5, As, Cd, and Cr6+ exceeded the risk tolerance standard of 10-6 for carcinogenic hazards. The highest hazard levels were observed in Onsan and Mipo industrial complexes. In the case of non-carcinogenic hazards, Mn was identified as exceeding the hazard tolerance of 1, and it showed the highest hazard in the Ulsan Industrial Complex. Conclusions: This study presented a detailed health risk from exposure to heavy metals in PM2.5 by industrial complexes located in Ulsan among five age groups. It is expected to be utilized as the basis for preparing damage control and industrial emission reduction measures against PM2.5 exposure at the Ulsan Industrial Complex.

Life Cycle Assessment (LCA) of the Wind Turbine : A case study of Korea Yeongdeok Wind Farm (한국 영덕 풍력단지 사례 연구를 통한 풍력 발전의 환경 영향 평가)

  • Jun Heon Lee;Jun Hyung Ryu
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.142-154
    • /
    • 2023
  • As the importance of the environment has been recognized worldwide, the need to calculate and reduce carbon emissions has been drawing an increasing attention throughout various industrial sections. Thereby the discipline of LCA (Life Cycle Assessment) involving raw material preparation, production processes, transportation and installation has been established. There is a clear research gap between the need and the practice for Korean Case of renewable energy industry, particularly wind power. To bridge the gap, this study conducted LCA research on wind power generation in the Korean area of Yeongdeok, an example of a domestic onshor wind power complex using SimaPro, which is the most widely used LCA system. As a result of the study, the energy recovery period (EPT) of one wind turbine is about 10 months, and the GHG emitted to generate power of 1 kwh is 15 g CO2/kWh, which is competitive compared to other energy sources. In the environmental impact assessment by component, the results showed that the tower of wind turbines had the greatest impact on various environmental impact sectors. The experience gained in this study can be further used in strengthening the introduction of renewable energy and reducing the carbon emission in line with reducing climate change.

GIS-based Debris Flow Risk Assessment (GIS 기반 토석류 위험도 평가)

  • Lee, Hanna;Kim, Gihong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.139-147
    • /
    • 2023
  • As heavy precipitation rates have increased due to climate change, the risk of landslides has also become greater. Studies in the field of disaster risk assessment predominantly focus on evaluating intrinsic importance represented by the use or role of facilities. This work, however, focused on evaluating risks according to the external conditions of facilities, which were presented via debris flow simulation. A random walk model (RWM) was partially improved and used for the debris flow simulation. The existing RWM algorithm contained the problem of the simulation results being overly concentrated on the maximum slope line. To improve the model, the center cell height was adjusted and the inertia application method was modified. Facility information was collected from a digital topographic map layer. The risk level of each object was evaluated by combining the simulation result and the digital topographic map layer. A risk assessment technique suitable for the polygon and polyline layers was applied, respectively. Finally, by combining the evaluated risk with the attribute table of the layer, a system was prepared that could create a list of objects expected to be damaged, derive various statistics, and express the risk of each facility on a map. In short, we used an easy-to-understand simulation algorithm and proposed a technique to express detailed risk information on a map. This work will aid in the user-friendly development of a debris flow risk assessment system.

The Effects of Eco-friendly Design of Dishwashing Detergent on Product's Carbon Emission Reduction (친환경 설계로 제조된 주방세제의 탄소배출량 감축 효과)

  • Kim, Jong Seok;Kim, Won Chan;Lee, Yong Ju;Kim, Heung Sik;Park, Heon Young;Yang, Bong Sig;Kim, Wan Soo;Park, Pil Ju;Hong, Eun Ah
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.87-91
    • /
    • 2015
  • As negative effects of climate change have been visualized and its direct damages to economy have been realized, the global efforts to respond to climate change by reducing greenhouse gas emission were accelerated. Korea's Carbon Footprint Labeling gets a lot of attention as one of the effective methods to contribute to national GHG reduction goal, and for enterprises to show customers how much effort the company put into global warming prevention. Consumers' interest on low-carbon products has been increasing. This study uses Life Cycle Assessment method to calculate the amount of carbon emission of dishwashing detergent, LG Household & Healthcare, which reduced carbon emissions by using raw materials that has relatively lower environment load. Life Cycle Assessment Method is based on guidelines of Carbon Footprint Labeling, Ministry of Environment, and pre-manufacturing, manufacturing, and disposal phase are included while use phase of the product is excluded from assessment. In order to understand the effects of eco-design on carbon emissions, the dishwashing detergent's carbon emissions are compared before and after the change of main raw materials. The result shows the improvement from $0.47kgCO_2eq/kg$ to $0.38kgCO_2eq/kg$ per product, and this means the main raw materials' carbon emissions could be reduced by around 9.4%, which is equivalent to 916tons of GHG emissions per year.

MAKING AGRICULTURAL INSURANCE IN INDIA FARMER-FRIENDLY AND CLIMATE RESILIENT

  • Kumar, K. Nirmal Ravi
    • Agribusiness and Information Management
    • /
    • v.11 no.1
    • /
    • pp.27-39
    • /
    • 2019
  • Agricultural risks are exacerbated by a variety of factors ranging from climatevariability and change, frequent natural disasters, uncertainties in yields and prices, weakrural infrastructure, imperfect markets and lack of financial services including limited spanand design of risk mitigation instruments such as credit and insurance. Indian agriculture has little more than half (53%) of its area still rainfed and this makes it highly sensitive to vagaries of climate causing unstable output. Besides adverse climatic factors, there are man-made disasters such as fire, sale of spurious seeds, adulteration of pesticides and fertilizers etc., and all these severely affect farmers through loss in production and farm income, and are beyond the control of farmers. Hence, crop insurance' is considered to be the promising tool to insulate the farmers from risks faced by them and to sustain them in the agri-business. This paper critically evaluates the performance of recent crop insurance scheme viz., Pradhan Mantri Fasal Bhima Yojana (PMFBY) and its comparative performance with earlier agricultural insurance schemes implemented in the country. It is heartening that, the comparative performance of PMFBY with earlier schemes revealed that, the Government has definitely taken a leap forward in covering more number of farmers and bringing more area under crop insurance with the execution of this new scheme and on this front, it deserves the appreciation in fulfilling the objective for bringing more number of farmers under insurance cover. The use of mobile based technology, reduced number of Crop Cutting Experiments (CCEs) and smart CCEs, digitization of land record and linking them to farmers' account for faster assessment/settlement of claims are some of the steps that contributed for effective implementation of this new crop insurance scheme. However, inadequate claim payments, errors in loss/yield assessment, delayed claim payment, no direct linkage between insurance companies and farmers are the major shortcomings of this scheme. This calls for revamping the crop insurance program in India from time to time in tune with the dynamic changes in climatic factors on one hand and to provide a safety-net for farmers to mitigate losses arising from climatic shocks on the other. The future research avenues include: insuring the revenue of the farmer (Price × Yield) as in USA and more and more tenant farmers should be brought under insurance by doling out discounts for group coverage of farmers like in Philippines where 20 per cent discount in premium is given for a group of 5-10 farmers, 30 per cent for a group of 10-20 and 40 per cent for a group of >20 farmers.

Assessment of Potential Distribution Possibility of the Warm-Temperate Woody Plants of East Asia in Korea (한국에서 동아시아 난대 목본식물의 잠재분포 가능성 평가)

  • Cheolho, Lee;Hwirae, Kim;Kang-Hyun, Cho;Byeongki, Choi;Bora, Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.269-281
    • /
    • 2022
  • The prediction of changes regarding the distribution of vegetation and plant species according to climate changes is important for ecosystem management. In this study, we attempted to develop an assessment method to evaluate the possibility of the potential distribution of warm-temperate woody plant species of East Asia in Korea. To begin with, a list of warm-temperate woody plants distributed in China and Japan, but not in Korea, was prepared, and a database consisting their global distribution and bioclimatic variables was constructed. In addition, the warm-temperate vegetation zone in Korea was delineated using the coldness index and relevant bioclimatic data were collected. After the exclusion of multicollinearity among bioclimatic variables using correlation analysis, mean temperature of the coldest quarter, mean temperature diurnal range, and annual precipitation were selected as the major variables that influence the distribution of warm-temperate plants. A multivariate environment similarity surfaces (MESS) analysis was conducted to calculate the similarity scores between the distribution of these three bioclimatic variables in the global distribution sites of the East Asian warm-temperate woody plants and the Korean warm-temperate vegetation zone. Finally, using stepwise variable-selection regression, the mean temperature of the coldest quarter and annual precipitation were selected as the main bioclimatic variables that affect the MESS similarity index. The mean temperature of the coldest quarter accounted for 88% of the total variance. For a total of 319 East Asian warm-temperate woody plant species, the possibility of their potential distribution in Korea was evaluated by applying the constructed multivariate regression model that calculates the MESS similarity index.

Risk assessment of water scarcity considering socio-economic characteristics in Gwangju and Jeonnam (광주·전남지역의 사회경제적 특성을 고려한 물부족 위험도 평가)

  • Hwang, Se Won;Park, Ju Young;Lee, Moon Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.599-613
    • /
    • 2024
  • Unlike other disasters, the water shortage problem caused by drought is characterized by the long-lasting ripple effect of the social and economic sectors in all regions of Korea, and the types and purposes of water mainly used are different depending on the type of region, so the factors and scale of water shortage damage are different. In this study, a methodology to evaluate the risk of water shortage based on socioeconomic characteristics was developed and applied to Gwangju and Jeollanam-do to analyze the results. To this end, 20 impact indicators for risk, exposure, and vulnerability items were selected according to the climate risk concept of IPCC AR6. The results of the water shortage risk evaluation reflecting socioeconomic characteristics were different from the risk results considering only the existing meteorological and hydrological factors. The areas with the greatest risk of water shortage were calculated as Yeonggwang-eup in Yeonggwang-gun, Yeonsan-dong and Haean-dong 4-ga in Mokpo-si, Jeokryang-dong in Yeosu-si and Geumsan-myeon in Goheung-si. Through the evaluation results, risk factors and countermeasures for water shortage were derived in consideration of detailed characteristics of the region, which can be used as data contributing to the establishment of measures to reduce drought damage tailored to the region in the future.

Spatiotemporal Assessment of the Late Marginal Heading Date of Rice using Climate Normal Data in Korea (평년 기후자료를 활용한 국내 벼 안전출수 한계기의 시공간적 변화 평가)

  • Lee, Dongjun;Kim, Junhwan;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.316-326
    • /
    • 2014
  • Determination of the late marginal heading date (LMHD), which would allow estimation of the late marginal seeding date and the late marginal transplanting date, would help identification of potential double cropping areas and, as a result, establishment of cropping systems. The objective of this study was to determine the LMHD at 51 sites in Korea. For these sites, weather data were obtained from 1971 to 2000 and from 1981 to 2010, which represent past and current normal climate conditions, respectively. To examine crop productivity on the LMHD, climatic yield potential (CYP) was determined to represent the potential yield under a given climate condition. The LMHD was calculated using accumulated temperature for 40 days with threshold values of $760^{\circ}C$, $800^{\circ}C$, $840^{\circ}C$ and $880^{\circ}C$. The value of CYP on a given LMHD was determined using mean temperature and sunshine duration for 40 days from the LMHD. The value of CYP on the LMHD was divided by the maximum value of CYP (CYPmax) in a season to represent the relative yield on the LMHD compared with the potential yield in the season. Our results indicated that the LMHD was delayed at most sites under current normal conditions compared with past conditions. Spatial variation of the LMHD differed by the threshold temperature. Overall, the minimum value of CYP/CYPmax was 81.8% under all of given conditions. In most cases, the value of CYP/CYPmax was >90%, which suggested that yield could be comparable to the potential yield even though heading would have occurred on the LMHD. When the LMHD could be scheduled later without considerable reduction in yield, the late marginal transplanting date could also be delayed accordingly, which would facilitate doublecropping in many areas in Korea. Yield could be affected by sudden change of temperature during a grain filling period. Yet, CYP was calculated using mean temperature and sunshine duration for 40 days after heading. Thus, the value of CYP/CYPmax may not represent actual yield potential due to change of the LMHD, which suggested that further study would be merited to take into account the effect of weather events during grain filling periods on yield using crop growth model and field experiments.