• Title/Summary/Keyword: climate change assessment

Search Result 1,029, Processing Time 0.023 seconds

Selection of Biodiversity Indicators for a National Assessment in Korea (국내 생물다양성 평가를 위한 지표 선정)

  • Inyoung Jang;Sung-Ryong Kang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.393-405
    • /
    • 2023
  • This study was conducted to select indicators for assessing national biodiversity. For this purpose, 140 biodiversity-related indicators were identified as a result of inventorying biodiversity-related indicators used in Korea and abroad, and when these indicators were applied to the pressure, status, and response indicator system, it was found that status indicators accounted for the largest number of indicators, with 29 pressure, 59 status, and 44 response. We also categorized the status indicators into genes, species, habitat, function, and quality, and found that species and habitat indicators accounted for the majority. Pressure indicators were categorized into direct exploitation, pollution, alien species, climate change, and habitat change. As a result, it was found that direct exploitation and pollution accounted for most of the pressure indicators. In addition, this study used internationally used indicator selection criteria to establish criteria for selecting domestic biodiversity assessment indicators. Using this list of indicators and indicator selection criteria, we evaluated the prioritization of domestically applicable biodiversity indicators through relevant expert consultations. 1) Vegetation class, 2) Land cover indicators, and 3) Change of protected area ranked highly. In fact, these indicators have been used in many studies due to the availability of assessable data. However, most of the highly scored indicators are based on ecosystem area, and further consideration of ecosystem functions and components(species) is needed.

Analysis of Suspended Solid of Andong and Imha Basin According to the Climate Change (기후변화에 따른 안동·임하호 유역의 부유사량 분석)

  • Lee, Geun-Sang;Kim, Jung-Yeol;Ahn, So-Ra;Sim, Jeong-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2010
  • This study analyzed the change of flowout and suspend solid in Andong and Imha basin according to the climate change to develop evaluation index about turbid water occurrence possibility and to support the countermeasures for turbid water management using GIS-based Soil and Water Assessment Tools (SWAT). MIROC3.2 hires model values of A1B climate change scenario that were supplied by Intergovernmental Panel on Climate Change (IPCC) were applied to future climage change data. Precipitation and temperature were corrected by applying the output value of 20th Century Climate Coupled Model (20C3M) based on past climate data during 1977 and 2006 and downscaled with Change Factor (CF) method. And future climate change scenarios were classified as three periods (2020s, 2050s, 2080s) and the change of flowout and suspended solid according to the climate change were estimated by coupling modeled value with SWAT model. Flowout and suspended solid of Andong and Imha basin in 2020s, 2050s, and 2080s were simulated as increasing compared with standard year (2006). Also, as the result of seasonal change, flowout and suspended solid of Andong and Imha basin in spring, autumn, and winter showed as increasing compared with standard year. And them of Andong and Imha basin in summer were analyzed as decreasing compared with standard year.

The Impact Assessment of Urbanization on the Atmospheric Environment (도시화가 대기환경에 미치는 영향평가)

  • Lee, Hyoun-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.3
    • /
    • pp.73-86
    • /
    • 1995
  • This paper demonstrates Environmental Impact Assessment (EIA) has to be applied for development projects with regard to the ecological, economical and social aspects before any decisions made in the project. Korea has confronted various environmental problems during the last fifteen years, even though EIA has been enacted since 1981. The role of impact assessment in planning and policy processes should be emphasized to investigate the magnitude and intensity of the adverse influences of economic development. In the Seoul Metropolitan Region, it is necessary to apply EIA all urban projects to reduce the adverse effects of urbanization. Special attention should be given to the climatological effects throughout the urbanization process in Korea to keep the urban area energy-efficient. This study intends not only to establish basic data for national-and regional-based land-use policy in the environmental aspects, but also to provide the basic data for the possible climate model (scenarios) that may provide spatial and temporal variability by analyzing the actual climatic record. There is a noticeable impact of urbanization on the atmospheric environment in the Seoul Metropolitan Region. In this sense, the climatic aspect must be taken into consideration in the process of EIA to mitigate the well-known climatic alterations of urbanization. Moreover, the techniques of assessment should be improved by developing geo-reference data sets to build models of the global climate in response to the man-made environmental change.

  • PDF

Uncertainty Characteristics in Future Prediction of Agrometeorological Indicators using a Climatic Water Budget Approach (기후학적 물수지를 적용한 기후변화에 따른 농업기상지표 변동예측의 불확실성)

  • Nam, Won-Ho;Hong, Eun-Mi;Choi, Jin-Yong;Cho, Jaepil;Hayes, Michael J.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.1-13
    • /
    • 2015
  • The Coupled Model Intercomparison Project Phase 5 (CMIP5), coordinated by the World Climate Research Programme in support of the Intergovernmental Panel on Climate Change (IPCC) AR5, is the most recent, provides projections of future climate change using various global climate models under four major greenhouse gas emission scenarios. There is a wide selection of climate models available to provide projections of future climate change. These provide for a wide range of possible outcomes when trying to inform managers about possible climate changes. Hence, future agrometeorological indicators estimation will be much impacted by which global climate model and climate change scenarios are used. Decision makers are increasingly expected to use climate information, but the uncertainties associated with global climate models pose substantial hurdles for agricultural resources planning. Although it is the most reasonable that quantifying of the future uncertainty using climate change scenarios, preliminary analysis using reasonable factors for selecting a subset for decision making are needed. In order to narrow the projections to a handful of models that could be used in a climate change impact study, we could provide effective information for selecting climate model and scenarios for climate change impact assessment using maximum/minimum temperature, precipitation, reference evapotranspiration, and moisture index of nine Representative Concentration Pathways (RCP) scenarios.

Climate change impact assessment of agricultural reservoir using system dynamics model: focus on Seongju reservoir

  • Choi, Eunhyuk
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.311-331
    • /
    • 2021
  • Climate change with extreme hydrological events has become a significant concern for agricultural water systems. Climate change affects not only irrigation availability but also agricultural water requirement. In response, adaptation strategies with soft and hard options have been considered to mitigate the impacts from climate change. However, their implementation has become progressively challenging and complex due to the interconnected impacts of climate change with socio-economic change in agricultural circumstances, and this can generate more uncertainty and complexity in the adaptive management of the agricultural water systems. This study was carried out for the agricultural water supply system in Seongju dam watershed in Seonju-gun, Gyeongbuk in South Korea. The first step is to identify system disturbances. Climate variation and socio-economic components with historical and forecast data were investigated Then, as the second step, problematic trends of the critical performance were identified for the historical and future climate scenarios. As the third step, a system structure was built with a dynamic hypothesis (causal loop diagram) to understand Seongju water system features and interactions with multiple feedbacks across system components in water, agriculture, and socio-economic sectors related to the case study water system. Then, as the fourth step, a mathematical SD (system dynamics) model was developed based on the dynamic hypothesis, including sub-models related to dam reservoir, irrigation channel, irrigation demand, farming income, and labor force, and the fidelity of the SD model to the Seongju water system was checked.

Improvement of the Environmental Conservation Value Assessment Map (ECVAM) by Complement of the Vegetation Community Stability Item (식생 군집구조 안정성 평가항목 보완을 통한 국토환경성평가지도 개선방안 연구)

  • Jeon, Seong-Woo;Song, Won-Kyong;Lee, Moung-Jin;Kang, Byung-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.2
    • /
    • pp.114-123
    • /
    • 2010
  • The Environmental Conservation Value Assessment Map (ECVAM) is a five grade assessment map created with nationally integrated environmental information and environmental values. The map is made through the evaluation of 67 items, including greenbelt area and bio-diversity. The ECVAM assesses the stability of the community using forest maps. However, the existing assessment method is problematic because the assessment grades are evaluated using higher than practical values; in part because it uses even-valued overlay and minimal indicator methods. This study was performed in order to suggest an integrated assessment method that could complement the stability evaluation based on existing methods. Accordingly, this study added forest type information, including whether the forest was natural or artificial, to the overlay method using forest diameter maps and forest density maps. As a result, the proposed ECVAM indicated a drastic grade change. After applying the method in South Korea, Grade I areas decreased 12.1%, from 52.6% to 40.6%, Grade II areas increased 11.9%, from 17.4% to 29.2%, and Grade III areas increased 0.2%, from 17.1% to 17.4%, respectively. From the results of the field survey, we found differences between natural forest and planted forest with regard to the number of mortality, species of shrubs, and vine cover. This means that natural forests are more stable than planted forests. This study suggests an improved assessment methodology to complement the existing EVCAM method. The results are expected to be used in environmental evaluations and forest conservation value assessments in ecology and environmental fields.

Vulnerability Assessment of Landslide by Heavy Rain to Establish Climate Change Adaptation Plan for Local Governments (지자체 기후변화 적응계획 수립지원을 위한 집중호우에 의한 산사태 취약성 평가)

  • Lee, Dong-kun;Kim, Ho Gul;Baek, Gyoung Hye;Seo, Changwan;Kim, Jaeuk;Song, Changkeun;Yu, Jeong Ah
    • Journal of Climate Change Research
    • /
    • v.3 no.1
    • /
    • pp.39-50
    • /
    • 2012
  • KMA(Korea Meteorological Administration) projected that annual mean temperatures of South Korea will rise $3.8^{\circ}C$ and the annual total precipitation will increase by 17 percent by 2100. Rainfall is concentrated during the summer in South Korea. Thus the risk of landslide by heavy rain is expected to increase. After the landslide of Mt. Umyeon occurred in July 2011, disaster of forest sector is highlighted. Therefore vulnerability assessment of landslide is urgent. However, vulnerability assessment based on local governments was not done yet. In this study, we assess vulnerability of landslide by heavy rain for local governments. We used several scenarios to consider uncertainty of climate change. Through this study, local governments can use the results to establish adaptation plans. Also, the results could be used to decrease vulnerability of landslide.

Local Adaptation Plan to Climate Change Impact in Seoul: Focused on Heat Wave Effects (서울시 기후변화 영향평가 및 적응대책 수립: 폭염영향을 중심으로)

  • Kim, Eunyoung;Jeon, Seong-Woo;Lee, Jung-Won;Park, Yong-Ha;Lee, Dong-Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • Against the backdrop of the clear impact of climate change, it has become essential to analyze the influence of climate change and relevant vulnerabilities. This research involved evaluating the impact of heat waves in Seoul, from among many local autonomous bodies that are responsible for implementing measures on adapting to climate change. To carry out the evaluation, the A1B scenario was used to forecast future temperature levels. Future climate scenario results were downscaled to $1km{\times}1km$ to result in the incorporation of regional characteristics. In assessing the influence of heat waves on people-especially the excess mortality-we analyzed critical temperature levels that affect excess mortality and came up with the excess mortality. Results of this evaluation on the impact of climate change and vulnerabilities indicate that the number of days on which the daily average temperature reaches $28.1^{\circ}C$-the critical temperature for excess mortality-in Seoul will sharply increase in the 2050s and 2090s. The highest level of impact will be in the month of August. The most affected areas in the summer will be Songpa-gu, Gangnam-gu, and Yeongdeungpo-gu. These areas have a high concentration of residences which means that heat island effects are one of the reasons for the high level of impact. The excess mortality from heat waves is expected to be at least five times the current figure in 2090. Adaptation plan needs to be made on drawing up long-term adaptation measures as well as implementing short-term measures to minimize or adapt the impact of climate change.

Economic Assessment of Climate Change Adaptation Technologies in Infrastructure Sector (사회기반시설물 기후변화 적응기술의 경제성분석)

  • Jeong, Hoyoung;Kim, Hyoungkwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.2
    • /
    • pp.44-52
    • /
    • 2019
  • The frequency and severity of damage caused by extreme climate events are increasing due to climate change. If the infrastructure is not prepared for the risks of climate change, property loss may occur in the facility itself and its surrounding areas. Therefore, climate change adaptation technology should be introduced to reduce future losses. Policy makers need to understand the economic impacts of each technology in order to select an appropriate option. Both the primary damage, which is the direct damage to the facility, and the secondary damage, which is the damage to the surrounding area due to climate change, should all be identified for understanding the economic impact from adaptation. This paper presents a procedure for deriving primary and secondary damage reductions from introducing adaptation technologies and suggests a methodology for evaluating adaptation technology specific to each infrastructure.

Assessment of Korea's GHG Reduction Targets through Comparative Analysis of OECD Countries' Nationally Determined Contributions (NDCs) (OECD 국가의 온실가스 감축공약(NDC)의 비교 분석을 통한 우리나라 온실가스 감축 목표 평가)

  • Lee, Manhee;Park, Sun-Kyoung
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.313-327
    • /
    • 2017
  • Korea has introduced Korea Emissions In 2015, the United Nations Conference on Climate Change (COP21) was held in Paris. The Paris Agreement indicates that all nations are in charge of mitigating climate change. Prior to COP21, 197 Parties submitted the Nationally Determined Contributions (NDCs), which are greenhouse gas reduction targets. On June 30, 2015, Korea also submitted an NDC target of 37% reduction compared to BAU in 2030. However, Korea's NDC was evaluated as "Inadequate" by the Climate Action Tracker (CAT). In addition, the domestic environmental group expressed a negative opinion as well. In view of this situation, it is necessary to conduct an objective assessment of quantitative analysis of NDC goals in Korea. The goal of this study is to evaluate NDC of Korea by comparing with those of OECD member countries. For comparative analysis, data such as population, GDP, primary energy supply affecting GHG emissions were obtained from the OECD homepage. The results indicate that emission reduction goal of 37% of Korea was $4^{th}$ highest goal among OECD member countries. If Korea achieves the emission reduction goal, the greenhouse gas emissions per capita in 2030 are $10^{th}$among OECD member countries. The greenhouse gas emissions per GDP are $13^{th}$, and emissions per TOE are $9^{th}$ among OECD member countries. The results show that greenhouse gas intensity of Korea is relatively high among OECD member countries. Therefore, it is needed to continuously endeavor to reduce greenhouse gas emissions to mitigate the global climate change. This study can be further used as a fundamental document to establish the future greenhouse reduction policy in Korea.