• 제목/요약/키워드: clean rings

검색결과 30건 처리시간 0.018초

INVO-CLEAN UNITAL RINGS

  • Danchev, Peter V.
    • 대한수학회논문집
    • /
    • 제32권1호
    • /
    • pp.19-27
    • /
    • 2017
  • We define and completely describe the structure of invo-clean rings having identity. We show that these rings are clean but not (weakly) nil-clean and thus they possess independent properties than these obtained by Diesl in [7] and by Breaz-Danchev-Zhou in [2].

SINGULAR CLEAN RINGS

  • Amini, Afshin;Amini, Babak;Nejadzadeh, Afsaneh;Sharif, Habib
    • 대한수학회지
    • /
    • 제55권5호
    • /
    • pp.1143-1156
    • /
    • 2018
  • In this paper, we define right singular clean rings as rings in which every element can be written as a sum of a right singular element and an idempotent. Several properties of these rings are investigated. It is shown that for a ring R, being singular clean is not left-right symmetric. Also the relations between (nil) clean rings and right singular clean rings are considered. Some examples of right singular clean rings have been constructed by a given one. Finally, uniquely right singular clean rings and weakly right singular clean rings are also studied.

ON S-EXCHANGE RINGS

  • Liu, Dajun;Wei, Jiaqun
    • 대한수학회보
    • /
    • 제57권4호
    • /
    • pp.945-956
    • /
    • 2020
  • We introduce the concept of S-exchange rings to unify various subclass of exchange rings, where S is a subset of the ring. Many properties on S-exchange rings are obtained. For instance, we show that a ring R is clean if and only if R is left U(R)-exchange, a ring R is nil clean if and only if R is left (N(R) - 1)-exchange, and that a ring R is J-clean if and only if R is left (J(R) - 1)-exchange. As a conclusion, we obtain a sufficient condition such that clean (nil clean property, respectively) can pass to corners and reprove that J-clean passes to corners by a different way.

f-CLEAN RINGS AND RINGS HAVING MANY FULL ELEMENTS

  • Li, Bingjun;Feng, Lianggui
    • 대한수학회지
    • /
    • 제47권2호
    • /
    • pp.247-261
    • /
    • 2010
  • An associative ring R with identity is called a clean ring if every element of R is the sum of a unit and an idempotent. In this paper, we introduce the concept of f-clean rings. We study various properties of f-clean rings. Let C = $\(\array{A\;V\\W\;B}\)$ be a Morita Context ring. We determine conditions under which the ring C is f-clean. Moreover, we introduce the concept of rings having many full elements. We investigate characterizations of this kind of rings and show that rings having many full elements are closed under matrix rings and Morita Context rings.

ON g(x)-INVO CLEAN RINGS

  • El Maalmi, Mourad;Mouanis, Hakima
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.455-468
    • /
    • 2020
  • An element in a ring R with identity is called invo-clean if it is the sum of an idempotent and an involution and R is called invoclean if every element of R is invo-clean. Let C(R) be the center of a ring R and g(x) be a fixed polynomial in C(R)[x]. We introduce the new notion of g(x)-invo clean. R is called g(x)-invo if every element in R is a sum of an involution and a root of g(x). In this paper, we investigate many properties and examples of g(x)-invo clean rings. Moreover, we characterize invo-clean as g(x)-invo clean rings where g(x) = (x-a)(x-b), a, b ∈ C(R) and b - a ∈ Inv(R). Finally, some classes of g(x)-invo clean rings are discussed.

A NOTE ON STRONGLY *-CLEAN RINGS

  • CUI, JIAN;WANG, ZHOU
    • 대한수학회지
    • /
    • 제52권4호
    • /
    • pp.839-851
    • /
    • 2015
  • A *-ring R is called (strongly) *-clean if every element of R is the sum of a projection and a unit (which commute with each other). In this note, some properties of *-clean rings are considered. In particular, a new class of *-clean rings which called strongly ${\pi}$-*-regular are introduced. It is shown that R is strongly ${\pi}$-*-regular if and only if R is ${\pi}$-regular and every idempotent of R is a projection if and only if R/J(R) is strongly regular with J(R) nil, and every idempotent of R/J(R) is lifted to a central projection of R. In addition, the stable range conditions of *-clean rings are discussed, and equivalent conditions among *-rings related to *-cleanness are obtained.

GROUP RINGS SATISFYING NIL CLEAN PROPERTY

  • Eo, Sehoon;Hwang, Seungjoo;Yeo, Woongyeong
    • 대한수학회논문집
    • /
    • 제35권1호
    • /
    • pp.117-124
    • /
    • 2020
  • In 2013, Diesl defined a nil clean ring as a ring of which all elements can be expressed as the sum of an idempotent and a nilpotent. Furthermore, in 2017, Y. Zhou, S. Sahinkaya, G. Tang studied nil clean group rings, finding both necessary condition and sufficient condition for a group ring to be a nil clean ring. We have proposed a necessary and sufficient condition for a group ring to be a uniquely nil clean ring. Additionally, we provided theorems for general nil clean group rings, and some examples of trivial-center groups of which group ring is not nil clean over any strongly nil clean rings.

NIL-CLEAN RINGS OF NILPOTENCY INDEX AT MOST TWO WITH APPLICATION TO INVOLUTION-CLEAN RINGS

  • Li, Yu;Quan, Xiaoshan;Xia, Guoli
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.751-757
    • /
    • 2018
  • A ring is nil-clean if every element is a sum of a nilpotent and an idempotent, and a ring is involution-clean if every element is a sum of an involution and an idempotent. In this paper, a description of nil-clean rings of nilpotency index at most 2 is obtained, and is applied to improve a known result on involution-clean rings.

SOME STRONGLY NIL CLEAN MATRICES OVER LOCAL RINGS

  • Chen, Huanyin
    • 대한수학회보
    • /
    • 제48권4호
    • /
    • pp.759-767
    • /
    • 2011
  • An element of a ring is called strongly nil clean provided that it can be written as the sum of an idempotent and a nilpotent element that commute. A ring is strongly nil clean in case each of its elements is strongly nil clean. We investigate, in this article, the strongly nil cleanness of 2${\times}$2 matrices over local rings. For commutative local rings, we characterize strongly nil cleanness in terms of solvability of quadratic equations. The strongly nil cleanness of a single triangular matrix is studied as well.

STRONGLY CLEAN MATRIX RINGS OVER NONCOMMUTATIVE LOCAL RINGS

  • Li, Bingjun
    • 대한수학회보
    • /
    • 제46권1호
    • /
    • pp.71-78
    • /
    • 2009
  • An element of a ring R with identity is called strongly clean if it is the sum of an idempotent and a unit that commute, and R is called strongly clean if every element of R is strongly clean. Let R be a noncommutative local ring, a criterion in terms of solvability of a simple quadratic equation in R is obtained for $M_2$(R) to be strongly clean.