References
- M.-S. Ahn and D. D. Anderson, Weakly clean rings and almost clean rings, Rocky Mountain J. Math. 36 (2006), no. 3, 783-798. https://doi.org/10.1216/rmjm/1181069429
- M. M. Ali, Idealization and theorems of D. D. Anderson, Comm. Algebra 34 (2006), no. 12, 4479-4501. https://doi.org/10.1080/00927870600938837
- D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
- G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra 212 (2008), no. 1, 281-296. https://doi.org/10.1016/j.jpaa.2007.05.020
- V. Camillo and J. J. Simon, The Nicholson-Varadarajan theorem on clean linear transformations, Glasg. Math. J. 44 (2002), no. 3, 365-369. https://doi.org/10.1017/S0017089502030021
- V. P. Camillo and H.-P. Yu, Exchange rings, units and idempotents, Comm. Algebra 22 (1994), no. 12, 4737-4749. https://doi.org/10.1080/00927879408825098
- H. Chen, On uniquely clean rings, Comm. Algebra 39 (2011), no. 1, 189-198. https://doi.org/10.1080/00927870903451959
- M. Chhiti, N. Mahdou, and M. Tamekkante, Clean property in amalgamated algebras along an ideal, Hacet. J. Math. Stat. 44 (2015), no. 1, 41-49.
- P. V. Danchev, Invo-clean unital rings, Commun. Korean Math. Soc. 32 (2017), no. 1, 19-27. https://doi.org/10.4134/CKMS.c160054
- P. V. Danchev, Corners of invo-clean unital rings, Pure Mathematical Sciences (2018), 27-31. https://doi.org/10.12988/pms.2018.877
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
- L. Fan and X. Yang, On rings whose elements are the sum of a unit and a root of a fixed polynomial, Comm. Algebra 36 (2008), no. 1, 269-278. https://doi.org/10.1080/00927870701665461
- J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001), no. 6, 2589-2595. https://doi.org/10.1081/AGB-100002409
- H. A. Khashan and A. H. Handam, g(x)-nil clean rings, Sci. Math. Jpn. 79 (2016), no. 2, 145-154.
- A. Lambert and T. G. Lucas, Nagata's principle of idealization in relation to module homomorphisms and conditional expectations, Kyungpook Math. J. 40 (2000), no. 2, 327-337.
- W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. https://doi.org/10.2307/1998510
- W. K. Nicholson, Strongly clean rings and Fitting's lemma, Comm. Algebra 27 (1999), no. 8, 3583-3592. https://doi.org/10.1080/00927879908826649
- W. K. Nicholson and Y. Zhou, Endomorphisms that are the sum of a unit and a root of a fixed polynomial, Canad. Math. Bull. 49 (2006), no. 2, 265-269. https://doi.org/10.4153/CMB-2006-027-6
- Z. Wang and J. Chen, A note on clean rings, Algebra Colloq. 14 (2007), no. 3, 537-540. https://doi.org/10.1142/S1005386707000491
- G. Xiao and W. Tong, n-clean rings and weakly unit stable range rings, Comm. Algebra 33 (2005), no. 5, 1501-1517. https://doi.org/10.1081/AGB-200060531
- G. Xiao and W. Tong, n-clean rings, Algebra Colloq. 13 (2006), no. 4, 599-606. https://doi.org/10.1081/AGB-200060531
- Y. Ye, Semiclean rings, Comm. Algebra 31 (2003), no. 11, 5609-5625. https://doi.org/10.1081/AGB-120023977
- Z. Yi and Y. Zhou, Baer and quasi-Baer properties of group rings, J. Aust. Math. Soc. 83 (2007), no. 2, 285-296. https://doi.org/10.1017/S1446788700036909