• 제목/요약/키워드: clay-bearing materials

Search Result 21, Processing Time 0.022 seconds

Reuse of dredged sediments as pavement materials by cement kiln dust and lime treatment

  • Yoobanpot, Naphol;Jamsawang, Pitthaya;Krairan, Krissakorn;Jongpradist, Pornkasem;Horpibulsuk, Suksun
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.1005-1016
    • /
    • 2018
  • This paper presents an investigation on the properties of two types of cement kiln dust (CKD)-stabilized dredged sediments, silt and clay with a comparison to hydrated lime stabilization. Unconfined compressive strength (UCS) and California bearing ratio (CBR) tests were conducted to examine the optimal stabilizer content and classify the type of highway material. A strength development model of treated dredged sediments was performed. The influences of various stabilizer types and sediment types on UCS were interpreted with the aid of microstructural observations, including X-ray diffraction and scanning electron microscopy analysis. The results of the tests revealed that 6% of lime by dry weight can be suggested as optimal content for the improvement of clay and silt as selected materials. For CKD-stabilized sediment as soil cement subbase material, the use of 8% CKD was suggested as optimal content for clay, whereas 6% CKD was recommended for silt; the overall CBR value agreed with the UCS test. The reaction products calcium silicate hydrate and ettringite are the controlling mechanisms for the mechanical performance of CKD-stabilized sediments, whereas calcium aluminate hydrate is the control for lime-stabilized sediments. These results will contribute to the use of CKD as a sustainable and novel stabilizer for lime in highway material applications.

Mineralogical Characteristics and Origins of Smectite in the Marine Sediment around South Shetland Islands, Antarctica (남극 사우스셰틀란드 해양퇴적물내 스멕타이트의 광물학적 특성과 기원)

  • 정기영;윤호일
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.22-32
    • /
    • 2002
  • Mineral composition and chemistry of the clay minerals in the three cores from the continental shelves of South Shetland Islands (NCS09) and Anberse Island (GC98-2), and from the fjord of King George Island (A10-01) were determined by X-ray diffraction and electron microprobe analysis in search of the distributions and origin of the clay minerals in the Antarctic marine sediments. Smectite content is relatively high in NCS09 regardless of core depths (av. 8.3%), but low in GC98-2 (1.1%). In Al0-01, smectite content is higher in the upper section than in the lower section. Kaolinite was not detected from all the cores in this study Yellow to yellowish green clay granules were commonly scattered in the sediments of NCS09 cores. The clays contain 16.97% and 2.53% $Fe_2$$O_3$$K_2$O. Average structural formula of the clay indicates ferrian beidellite . The (Fe, K)-rich smectite of NSC09 must have been derived from relatively young basaltic volcanics altered by reaction with seawater near Shetland Islands by glacial erosion or eolian process related to volcanic eruption. GC98-2 nearer to Antarctic continent is very low in smectite content. In A10-01, the lower diamicton was deposited from the glacial erosion of smectite-free ancient volcanics in the interior of King George Island, while the upper section was derived from the smectite-bearing terrestrial debris and eolian materials after retreat of glaciers in Marian Cove and ice cover in Barton Peninsula. Thehigh K contents of smectites suggest the interstratification of illite and smectite layers, which might be observed by future TEM lattice fringe imaging.

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

접합요소를 이용한 복합기초지반의 변형해석

  • Park, Byeong-Gi;Jeong, Jin-Seop;Lee, Mun-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1987.06a
    • /
    • pp.51-80
    • /
    • 1987
  • In this studys a numerical analysis on the defomation of foundation layer was carried out by indroducing joint element. The method using the joust element between adj assent different materials has been originally developed for rock behavior(Goodman, et al. 1968) . The application of this method to the interface between the footing and soil layer proved satisfactory(Ghaboussi p et at. 1973). Authors tried to obtain the deformation of rrcompound foundation layerg", which vertically or horizontally or both consists of the natural(or intact) soft clay layer and the layer improved artificially in order to get high stiff-fness with replacement or chemical treatment to reduce the excessively detrimental settlemellt or lateral displacement in case of banking or building the civil structure on the soft layer. The joint conditions were classified into three categories : contacts sliding and separation. By coupling "JOINT" as a subroutine into multi-purpose code for the finite element method of the foundatlion daveloped by authors on the assumption that shearing and normal displacement can not be coupledl which terms pinon-dilatant" and by selecting modified Cam-clay modeIP the deformation analysis was performmed. The results using joint element were compared with those secured without introduction of joint element Nain results analized are as follows : 1. For the prediction of settlement and lateral desplacement, the result due to joint element was evaluated larger, which was regarded safe. 2. For the determination of ultimate bearing capacetyi the value using joint element appeared smaller by 20%, which was also safe.

  • PDF

Evaluation of monotonic and cyclic behaviour of geotextile encased stone columns

  • Ardakani, Alireza;Gholampoor, Naeem;Bayat, Mahdi;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Stone column installation is a convenient method for improvement of soft ground. In very soft clays, in order to increase the lateral confinement of the stone columns, encasing the columns with high stiffness and creep resistant geosynthetics has proved to be a successful solution. This paper presents the results of three dimensional finite element analyses for evaluating improvement in behaviour of ordinary stone columns (OSCs) installed in soft clay by geotextile encasement under monotonic and cyclic loading by a comprehensive parametric study. The parameters include length and stiffness of encasement, types of stone columns (floating and end bearing), frictional angle and elastic modulus of stone column's material and diameter of stone columns. The results indicate that increasing the stiffness of encasement clearly enhances cyclic behaviour of geotextile encased stone columns (GESCs) in terms of reduction in residual settlement. Performance of GESCs is less sensitive to internal friction angle and elasticity modulus of column's materials in comparison with OSCs. Also, encasing at the top portion of stone column up to triple the diameter of column is found to be adequate in improving its residual settlement and at all loading cycles, end bearing columns provide much higher resistance than floating columns.

Mechanism on Bulb Formation of Compaction Pile Depending on Materials (재료에 따른 다짐말뚝 구근 형성 메커니즘)

  • Choi, Jeong Ho;Lee, Min Jy;Falcon, Sen Sven;Park, Seong Jin;Choo, Yun Wook;Kim, Il Gon;Kim, Byeong Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.25-37
    • /
    • 2022
  • In this paper, a small-scale model testing system was developed using a series of small-scale model tests to analyze the mechanism of compaction pile formation and evaluate the quality of controlled grading aggregates proposed as an alternative material to the sand compaction pile (SCP) method and granular compaction pile (GCP). These are the most typical ground improvement methods in field practice, particularly for soft grounds. However, the SCP has faced difficulties due to the supply shortage of natural sand and the corresponding price surge of sand. The GCP is limited in marine soft grounds because of the failure occurring at the pile tip caused by excessive expansion of the deeper bulbs, leading to uneven bulb formation. The uniformity of compacted pile bulbs is critical to ensuring the bearing capacity and quality of the compaction pile. This study aims to evaluate the performance of the new material and controlled grading aggregates using small-scale model tests simulating field compaction process to investigate its potential application in comparison with SCP. The compaction piles are examined in four cases according to different materials used for compaction pile and clay strength. The compaction pile materials, which are made of sand and controlled grading aggregates, used in this study were compared to reveal the mechanism of the bulb creation. The experimental data confirm that the bulb formation quality of the traditional sand and the new material, controlled grading aggregates are comparable. The compaction pile made of controlled grading aggregates presents higher bearing capacity than that of marine sand.

An Experimental Study on the Effects of Crushed Stone Compaction Pile in the Sea Clay Layer (해성 점토지반의 쇄석다짐말뚝 보강 효과에 관한 실험적 연구)

  • Lee, Seung-Bong;Im, Jong-Chul;Park, Lee-Keun;Joo, In-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1031-1038
    • /
    • 2005
  • Recently, due to lack of sand suppy, the cost of sand has increase. Therefore, alternative materials are needed. So, in this study the Crush Stone Compaction Pile used in America and Europe has been compared and analyzed Sand Compaction Pile used in Korea. Tests were performed at various sizes of Crush Stone and replacement ratio. Frist, it was compared and analyzed with low and high replacement ratio with the same size of crush stone. Second, it was compared and analyzed with different size of crush stone at constant replacement ratio. The result of these tests were compared with sand of the same replacement ratio. Here, the properties that were comares and analyzed are the ultimate bearing capacity and quantity of ground upheaval.

  • PDF

Strength Characteristics of Improved Dredged Clay for Urgent Recovery of Ground Subsidence (함몰지반 긴급복구를 위한 개량준설점토의 강도 특성)

  • Oh, Sewook;Baek, Seungju;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.31-38
    • /
    • 2019
  • Recently, there has been an increasing number of ground subsidence (sink-hole) in the downtown areas, and in such a case, it is important to minimize accidents and passages through prompt recovery. With respect to the present recovery method for ground subsidence, the methods of applying the back filling after excavating the ground subsidence or using the grouting injected materials to restore the ground are mostly used, but there has been few studies on materials used for recovering the ground subsidence. Therefore, in order to clarify the characteristics of back filling materials used in the ground subsidence, this study uses the environment-friendly hardening agent to improve the dredged clay, and then, the mixture ratio of hardening agent and mixture ratio of decomposed granite soil is changed to cure for 3, 7, 14 and 28 days to analyze the intensity characteristics of the unconfined compression, and it was compared with the unconfined compression intensity for the previously used cement, a hardening agent. In order to evaluate the characteristics of intensity on the back filling materials, the C.B.R test was carried out, and for the review on whether the back filling materials influence on corrosion of water and sewer pipes and others, the soil non-resistance test was carried out. As a result of the test, for the case of the recovery work of the ground subsidence that requires urgency, it is considered as prudent if the hardening agents of 12% are integrated to cure for 3 days or longer, and for not having the influence on the corrosion of the gas tube or water pipes, it is proposed to mix for 30% or more of the decomposed granite soil. Door model test were conducted To confirm the bearing capacity characteristics of the solidified layer.

Behavior characteristics of Soft Ground Improved by Granular Pile (Granular Pile에 의해 개량된 연약지반의 거동특성)

  • Chun, Byung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.63-72
    • /
    • 2001
  • As construction cases on soft ground are increasing, the necessity of ground improvement is also increasing. Granular pile is one of the methods for soft clay and for loose sandy soil. In our country, SCP(Sand Compaction Pile) method using sand material has been mainly used to improve soft ground, but Granular pile with crushed-stone was not used much. However, alternative material such that crushed-stone is needed to substitute for sand due to the environmental and economical problems. In this study, staged load test and consolidation test were performed in the laboratory to observe the behavior of soft ground improved by Granular pile. In order to evaluate the characteristics such as bearing capacity, drainage, and settlement, sand and crushed-stone were applied as each pile material. The test results show that crushed-stone has higher bearing capacity and less settlement than those of sand under similar pore water pressure condition. Therefore, crushed-stone is determined to be appropriate as substitute for sand.

  • PDF

Comparative Anatomy of the Hydrothermal Alteration of Chonnam and Kyongsang Hydrothermal Clay Alteration Areas in Korea (전남 및 경상 열수변질 점토광상의 생성환경 비교)

  • Koh, Sang Mo;Chang, Ho Wan
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.81-87
    • /
    • 1997
  • Chonnam and Kyongsang clay alteration areas are distributed in volcanic fields of the Yuchon Group in late Cretaceous period. The host rock of the Chonnam alteration area is generally acidic and that of the Kyongsang alteration area is acidic to dominantly intermediate volcanics. The important difference of two alteration areas is source of fluid; the Chonnam alteration area is characterized by dominantly meteoric water and the Kyongsang alteration area is characterized by dominantly magmatic water. Accordingly, the high temperature minerals such as pyrophyllite and andalusite, and boron bearing minerals such as dumortierite and tourmaline are common in the Kyongsang alteration area. In contrast to this, the lower temperature minerals such as kaolin and alunite are common in the Chonnam alteration area. The mineralogical difference of two alteration areas were depended on the difference of the formation temperature of clay deposits. The other important geochemical difference is the chemistry of hydrothermal solution such as pH. The alteration of "acid-sulfate type" with alteration mineral assemblage of alunite-kaolin-quartz is dominant in the Chonnam alteration area, which was caused by the attack of strong acid and acid solution. In contrast to this, the that of "quartz-sericite type" with the mineral assemblage of sericite-quartz is dominant in the Kyongsang alteration area, which was caused by the attack of neutral or weak acid solution. Also, the Kyongsang and Chonnam alteration areas show the difference in structural setting; the Chonnam alteration area is commonly associated with silicic domes and the Kyongsang alteration area is commonly associated with calderas.

  • PDF