• Title/Summary/Keyword: classifiers

Search Result 743, Processing Time 0.024 seconds

Speaker Identification on Various Environments Using an Ensemble of Kernel Principal Component Analysis (커널 주성분 분석의 앙상블을 이용한 다양한 환경에서의 화자 식별)

  • Yang, Il-Ho;Kim, Min-Seok;So, Byung-Min;Kim, Myung-Jae;Yu, Ha-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.188-196
    • /
    • 2012
  • In this paper, we propose a new approach to speaker identification technique which uses an ensemble of multiple classifiers (speaker identifiers). KPCA (kernel principal component analysis) enhances features for each classifier. To reduce the processing time and memory requirements, we select limited number of samples randomly which are used as estimation set for each KPCA basis. The experimental result shows that the proposed approach gives a higher identification accuracy than GKPCA (greedy kernel principal component analysis).

Deep Window Detection in Street Scenes

  • Ma, Wenguang;Ma, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.855-870
    • /
    • 2020
  • Windows are key components of building facades. Detecting windows, crucial to 3D semantic reconstruction and scene parsing, is a challenging task in computer vision. Early methods try to solve window detection by using hand-crafted features and traditional classifiers. However, these methods are unable to handle the diversity of window instances in real scenes and suffer from heavy computational costs. Recently, convolutional neural networks based object detection algorithms attract much attention due to their good performances. Unfortunately, directly training them for challenging window detection cannot achieve satisfying results. In this paper, we propose an approach for window detection. It involves an improved Faster R-CNN architecture for window detection, featuring in a window region proposal network, an RoI feature fusion and a context enhancement module. Besides, a post optimization process is designed by the regular distribution of windows to refine detection results obtained by the improved deep architecture. Furthermore, we present a newly collected dataset which is the largest one for window detection in real street scenes to date. Experimental results on both existing datasets and the new dataset show that the proposed method has outstanding performance.

Radar Image Extraction Scheme for FMCW Radar-Based Human Motion Indication (FMCW 레이다 기반 휴먼 모션 인지용 레이다 영상 추출 기법)

  • Hyun, Eugin;Jin, Young-Seok;Jeon, Hyeong-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.411-414
    • /
    • 2018
  • In this paper, we propose a radar image extraction scheme for frequency modulated continuous wave radar-based human motion indication. We extracted three-dimensional(3D) range-velocity-angle spectra and generated three micro-profile images by compressing the 3D images in all three directions in every frame. Furthermore, we used body echo suppression to make use of the weak reelection such as in hands and arms. By applying the complete images to classifiers, various human motions can be indicated.

Design of Black Plastics Classifier Using Data Information (데이터 정보를 이용한 흑색 플라스틱 분류기 설계)

  • Park, Sang-Beom;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.569-577
    • /
    • 2018
  • In this paper, with the aid of information which is included within data, preprocessing algorithm-based black plastic classifier is designed. The slope and area of spectrum obtained by using laser induced breakdown spectroscopy(LIBS) are analyzed for each material and its ensuing information is applied as the input data of the proposed classifier. The slope is represented by the rate of change of wavelength and intensity. Also, the area is calculated by the wavelength of the spectrum peak where the material property of chemical elements such as carbon and hydrogen appears. Using informations such as slope and area, input data of the proposed classifier is constructed. In the preprocessing part of the classifier, Principal Component Analysis(PCA) and fuzzy transform are used for dimensional reduction from high dimensional input variables to low dimensional input variables. Characteristic analysis of the materials as well as the processing speed of the classifier is improved. In the condition part, FCM clustering is applied and linear function is used as connection weight in the conclusion part. By means of Particle Swarm Optimization(PSO), parameters such as the number of clusters, fuzzification coefficient and the number of input variables are optimized. To demonstrate the superiority of classification performance, classification rate is compared by using WEKA 3.8 data mining software which contains various classifiers such as Naivebayes, SVM and Multilayer perceptron.

Damage analysis of carbon nanofiber modified flax fiber composite by acoustic emission

  • Li, Dongsheng;Shao, Junbo;Ou, Jinping;Wang, Yanlei
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.127-136
    • /
    • 2017
  • Fiber reinforced polymer (FRP) has received widespread attention in the field of civil engineering because of its superior durability and corrosion resistance. This article presents the damage mechanisms of a novelty composite called carbon nanofiber modified flax fiber polymer (CNF-modified FFRP). The ability of acoustic emission (AE) to detect damage evolution for different configurations of specimens under uniaxial tension was examined, and some useful AE characteristic parameters were obtained. Test results shows that the mechanical properties of modified composites are associated with the CNF content and the evenness of CNF dispersed in the epoxy matrix. Various damage mechanisms was established by means of scanning electron microscope images. The fuzzy c-means clustering were proposed to classify AE events into groups representing different generation mechanisms. The classifiers are constructed using the traditional AE features -- six parameters from each burst. Amplitude and peak-frequency were selected as the best cluster-definition features from these AE parameters. After comprehensive comparison, a correlation between these AE events classes and the damage mechanisms observed was proposed.

Classification of Forest Vegetation Zone over Southern Part of Korean Peninsula Using Geographic Information Systems (環境因子의 空間分析을 통한 南韓지역의 山林植生帶 구분/지리정보시스템(GIS)에 의한 접근)

  • Lee, Kyu-Sung;Byong-Chun Lee;Joon Hwan Shin
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.465-476
    • /
    • 1996
  • There are several environmental variables that may be influential to the spatial distribution of forest vegetation. To create a map of forest vegetation zone over southern part of Korean Peninsula, digital map layers were produced for each of environmental variables that include topography, geographic locations, and climate. In addition, an extensive set of field survey data was collected at relatively undisturbed forests and they were introduced into the GIS database with exact coordinates of survey sites. Preliminary statistical analysis on the survey data showed that the environmental variables were significantly different among the previously defined five forest vegetation zones. Classification of the six layers of digital map representing environmental variables was carried out by a supervised classifier using the training statistics from field survey data and by a clustering algorithm. Although the maps from two classifiers were somewhat different due to the classification procedure applied, they showed overall patterns of vertical and horizontal distribution of forest zones. considering the spatial contents of many ecological studies, GIS can be used as an important tool to manage and analyze spatial data. This study discusses more about the generation of digital map and the analysis procedure rather than the outcome map of forest vegetation zone.

  • PDF

Hybrid Learning Architectures for Advanced Data Mining:An Application to Binary Classification for Fraud Management (개선된 데이터마이닝을 위한 혼합 학습구조의 제시)

  • Kim, Steven H.;Shin, Sung-Woo
    • Journal of Information Technology Application
    • /
    • v.1
    • /
    • pp.173-211
    • /
    • 1999
  • The task of classification permeates all walks of life, from business and economics to science and public policy. In this context, nonlinear techniques from artificial intelligence have often proven to be more effective than the methods of classical statistics. The objective of knowledge discovery and data mining is to support decision making through the effective use of information. The automated approach to knowledge discovery is especially useful when dealing with large data sets or complex relationships. For many applications, automated software may find subtle patterns which escape the notice of manual analysis, or whose complexity exceeds the cognitive capabilities of humans. This paper explores the utility of a collaborative learning approach involving integrated models in the preprocessing and postprocessing stages. For instance, a genetic algorithm effects feature-weight optimization in a preprocessing module. Moreover, an inductive tree, artificial neural network (ANN), and k-nearest neighbor (kNN) techniques serve as postprocessing modules. More specifically, the postprocessors act as second0order classifiers which determine the best first-order classifier on a case-by-case basis. In addition to the second-order models, a voting scheme is investigated as a simple, but efficient, postprocessing model. The first-order models consist of statistical and machine learning models such as logistic regression (logit), multivariate discriminant analysis (MDA), ANN, and kNN. The genetic algorithm, inductive decision tree, and voting scheme act as kernel modules for collaborative learning. These ideas are explored against the background of a practical application relating to financial fraud management which exemplifies a binary classification problem.

  • PDF

Band Selection Using Forward Feature Selection Algorithm for Citrus Huanglongbing Disease Detection

  • Katti, Anurag R.;Lee, W.S.;Ehsani, R.;Yang, C.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.417-427
    • /
    • 2015
  • Purpose: This study investigated different band selection methods to classify spectrally similar data - obtained from aerial images of healthy citrus canopies and citrus greening disease (Huanglongbing or HLB) infected canopies - using small differences without unmixing endmember components and therefore without the need for an endmember library. However, large number of hyperspectral bands has high redundancy which had to be reduced through band selection. The objective, therefore, was to first select the best set of bands and then detect citrus Huanglongbing infected canopies using these bands in aerial hyperspectral images. Methods: The forward feature selection algorithm (FFSA) was chosen for band selection. The selected bands were used for identifying HLB infected pixels using various classifiers such as K nearest neighbor (KNN), support vector machine (SVM), naïve Bayesian classifier (NBC), and generalized local discriminant bases (LDB). All bands were also utilized to compare results. Results: It was determined that a few well-chosen bands yielded much better results than when all bands were chosen, and brought the classification results on par with standard hyperspectral classification techniques such as spectral angle mapper (SAM) and mixture tuned matched filtering (MTMF). Median detection accuracies ranged from 66-80%, which showed great potential toward rapid detection of the disease. Conclusions: Among the methods investigated, a support vector machine classifier combined with the forward feature selection algorithm yielded the best results.

THE MODIFIED UNSUPERVISED SPECTRAL ANGLE CLASSIFICATION (MUSAC) OF HYPERION, HYPERION-FLASSH AND ETM+ DATA USING UNIT VECTOR

  • Kim, Dae-Sung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.134-137
    • /
    • 2005
  • Unsupervised spectral angle classification (USAC) is the algorithm that can extract ground object information with the minimum 'Spectral Angle' operation on behalf of 'Spectral Euclidian Distance' in the clustering process. In this study, our algorithm uses the unit vector instead of the spectral distance to compute the mean of cluster in the unsupervised classification. The proposed algorithm (MUSAC) is applied to the Hyperion and ETM+ data and the results are compared with K-Meails and former USAC algorithm (FUSAC). USAC is capable of clearly classifying water and dark forest area and produces more accurate results than K-Means. Atmospheric correction for more accurate results was adapted on the Hyperion data (Hyperion-FLAASH) but the results did not have any effect on the accuracy. Thus we anticipate that the 'Spectral Angle' can be one of the most accurate classifiers of not only multispectral images but also hyperspectral images. Furthermore the cluster unit vector can be an efficient technique for determination of each cluster mean in the USAC.

  • PDF

Aircraft Classification with Fusion of HRRP and JEM Based on the Confidence of a Classifier (구분기 신뢰도에 기반한 HRRP 및 JEM 융합 항공기 식별)

  • Kim, Si-Ho;Lee, Sang-In;Chae, Dae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.217-224
    • /
    • 2017
  • In this paper, we propose a fusion classification method combining HRRP and JEM classifier with complementary properties for the classification of aircraft. The fusion method is based on the confidence of a classifier for a classification result to improve performance compared with single classifier in various situations. The confidence is defined as the posterior probability estimated from the classification performance of a classifier and it depends on the aspect angle and the certainty for a classification result. Through the classification test using simulation data, we can verify that the proposed fusion method shows good performance by fusing the classifiers effectively.