
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, Feb. 2020                                   855 
Copyright ⓒ 2020 KSII 

Deep Window Detection in Street Scenes  
 

Wenguang Ma and Wei Ma* 
Faculty of Information Technology, Beijing University of Technology 

Beijing, China 
[e-mail: mawenguang@emails.bjut.edu.cn, mawei@bjut.edu.cn] 

*Corresponding author: Wei Ma 
 

Received Septebmer 15, 2019; revised December 5, 2019; accepted January 27, 2019;  
published February 29, 2020 

 

Abstract 
 
Windows are key components of building facades. Detecting windows, crucial to 3D semantic 
reconstruction and scene parsing, is a challenging task in computer vision. Early methods try 
to solve window detection by using hand-crafted features and traditional classifiers. However, 
these methods are unable to handle the diversity of window instances in real scenes and suffer 
from heavy computational costs. Recently, convolutional neural networks based object 
detection algorithms attract much attention due to their good performances. Unfortunately, 
directly training them for challenging window detection cannot achieve satisfying results. In 
this paper, we propose an approach for window detection. It involves an improved Faster 
R-CNN architecture for window detection, featuring in a window region proposal network, an 
RoI feature fusion and a context enhancement module. Besides, a post optimization process is 
designed by the regular distribution of windows to refine detection results obtained by the 
improved deep architecture. Furthermore, we present a newly collected dataset which is the 
largest one for window detection in real street scenes to date. Experimental results on both 
existing datasets and the new dataset show that the proposed method has outstanding 
performance. 
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1. Introduction 

Windows are important parts of building facades. The purpose of window detection is to 
obtain the locations of windows in input images. It is a fundamental task in computer vision 
and can help 3D reconstruction and visual SLAM in street scenes [1]. It also has many other 
applications, such as city modeling and autonomous city navigation.  

Accurate detection of windows, however, is challenging due to the complexity in real 
scenes. Specifically speaking, windows in different styles of facades have various appearances. 
The opening or closing states of windows are uncertain. Decorations looking like windows are 
inevitable. Glass reflection causes large variations of window appearances. Occlusions, such 
as trees and vehicles, often appear in front of buildings.  

In the past few years, many methods [2, 3, 4] have been proposed to detect windows. Most 
of them are based on hand-crafted features and traditional classifiers. In these methods, a 
sliding window is often used to extract multi-scale proposals, each indicating a possible 
window. Hand-crafted features, e.g. HOG [5], SIFT [6] and Haar wavelet [7] are extracted 
from each proposal region. Classifiers, such as AdaBoost [7] or SVM [8], are trained to 
determine the labels of proposals. These methods have many limitations. First, these 
hand-crafted features are inadequate to represent complex windows. Second, the sliding 
window always generates many redundant proposals, which substantially slows the detection 
process. 

Recently, CNN-based object detection technologies [9-20] have shown its amazing power 
in various fields, such as vehicle detection [9] for transportation surveillance, face detection 
[10] for real-time video analysis and CT lesion detection [11] for AI medicine. Generally, 
these detection methods adopt a convolutional neural network to extract features of input 
images, which are then fed into two branches, for object classification and bounding box 
localization, respectively. Currently, there are many popular object detection algorithms. For 
example, R-CNN [12], Fast R-CNN [13] and Faster R-CNN [14] are two-stage detectors 
favoring high accuracy. YOLO [15], SSD [16] and RetinaNet [17] are one-stage detectors 
favoring high efficiency. However, direct using these algorithms for window detection is 
unable to obtain satisfactory results due to the various appearances of windows and the 
complexity of real scenes. 

In this paper, we introduce an accurate and efficient window detection architecture which is 
inspired by the two-stage detector Faster R-CNN [14]. The proposed architecture mainly 
includes three novel modules: Window RPN, RoI feature fusion, and context enhancement 
module. In Window RPN, we design three extra anchors according to the size distribution of 
windows. With the original nine anchors used in Faster R-CNN, Window RPN, containing 
twelve anchors, achieves better matching between anchors and window ground truth boxes. In 
order to handle some occlusions and small windows, we present an RoI feature fusion module 
to take advantage of both the details in the low-level layers and context in the high-level layers. 
Due to the layout of windows takes a grid structure, the square receptive field achieved by 
feature extraction module (e.g. VGGNet [21] or ResNet [22]) may affect the detection of 
windows. We propose a novel Context Enhancement Module (CEM) that provides diverse 
receptive fields to tackle this problem. Finally, object classification branch and bounding box 
localization branch are adopted to detect windows. Furthermore, windows with confidence 
scores lower than a pre-defined threshold will be filtered out. Based on the regularity of 
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windows in facades, such as the similarity and repeatability, we present a post optimization 
method to discover probably missed windows. 

To our best knowledge, there is no specialized dataset for window detection in real street 
scenes to date, and our work fills the gap. We provide a new dataset, named Street Scene 
Window Detection (SSWD), which includes thousands of images containing windows. SSWD 
is carefully annotated with exhaustive bounding boxes. Some examples are shown in Fig. 1.  
The main contributions can be summarized as: 
 A window detection dataset of street scenes is built and published at: 

https://github.com/wohaiyo/StreetSceneWindowDetectionDataset. The dataset, together 
with a small-scale dataset composed of around 100 pure facade images, will be used to 
train and evaluate the proposed method which has specialties as follows. 

 We introduce an improved window detection network that features Window RPN and 
RoI feature fusion. 

 We propose a novel context enhancement module to diversify the receptive fields of 
features in our detection network, which help achieve better results. 

 Base on the regularity distribution of windows on the facade, we present an effective post 
optimization method to relocate missed windows. 

The paper is organized as follows: we first review the previous works about window 
detection in Section 2. Then, we explain the details of the proposed SSWD dataset in Section 3. 
The proposed method for window detection is presented in Section 4. Experimental settings 
and results are provided in Section 5. Finally, Section 6 concludes the paper. 

2. Related Work 
In this section, we first review some early traditional methods on detecting windows. Then, 
some state-of-the-art object detection algorithms based on deep CNNs are introduced. We 
further analyze some existing datasets used for window detection. 

2.1 Traditional window detection 
Research on window detection has been active for a long time. Most of the early works [2, 3, 4] 
use hand-crafted features of windows to train a classifier and employ the sliding window to 
find out all possible positions. For example, [2] proposed a window detection system. During 
training, it extracted multi-scale Haar wavelet representation from marked regions in training 
images and learned an Adaboost driven cascaded decision tree. During inference, a sliding 
window was moved over a test image with pyramid scales. Similarly, [3] proposed a pipeline 
to detect windows of rectified images based on Haar-like features. However, the Haar-like 
features used in [7] were not robust since it cannot handle window detection in complex scenes. 
Moreover, the sliding window operation was time-consuming. On the other hand, another 
method [4] presented an idea for window detection that does not require a learning stage. This 
method achieved window detection by extended gradient projection with a facade color 
descriptor based on k-means clustering in CIE-Lab color space. It is difficult to use the method 
without learning for detecting windows in real street scenes. In particular, the texture of walls 
and some decorations in facades are generally complex, which makes it hard to use only 
gradient projection to locate windows. 

2.2 Object detection in deep CNNs 
With the quick improvement of deep convolutional neural networks, object detection is 
dominated by CNN-based detectors, which could be roughly divided into two categories: 

https://github.com/wohaiyo/StreetSceneWindowDetectionDataset
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two-stage approaches and one-stage approaches. The two-stage detection approaches, like 
R-CNN [12], Fast R-CNN [13] and Faster R-CNN [14], mainly consist of two stages. The first 
stage proposes a set of candidate regions, and the second one determines the accurate 
bounding boxes for the proposed regions and the corresponding class labels. Notably, Ren et al. 
[14] proposed region proposal network (RPN), a fully convolutional network that replaces 
traditional selective search strategy. Thus, the two-stage detectors could be trained end-to-end 
and generate high accuracy detection results. It ran slow (about 5 fps) due to the two-stage 
computational costs. The one-stage object detection approaches (e.g., YOLO [15], SSD [16], 
RetinaNet [17], CornerNet [18]) address the low-efficiency problem by using the 
feed-forward convolutional network to directly predict object locations and labels. SSD [16] 
spread out anchors with different scales to several convolutional layers and enforced each 
layer to focus on predicting object at a certain scale. Therefore, SSD achieved high accuracy in 
real-time. However, there exist serious class imbalance problems in one-stage object detector. 
[17] proposed focal loss which makes the network focus on the training of hard examples and 
prevents easy negative examples. To sum up, many CNN-based object detection algorithms 
have been proposed and verified in various tasks: face detection, pedestrian detection, and 
vehicle detection, etc. However, directly using these algorithms to detect windows cannot 
obtain satisfactory results. Our method combines the strength of the CNN detector and regular 
distribution property of windows to improve the accuracy of window detection. 

2.3 Dataset about window detection 
As for current data resources, to our best acknowledge, there is no dataset especially collected 
for window detection task to date. Although there exist a few datasets which contain window 
label, such as COCO [23] and ADE20K [24]. It is hard to use these datasets to detect windows 
in real scenes because of their rare window instances. On the other hand, facade datasets, such 
as CMP [25] and ECP [26], contain more windows in these datasets. However, all of the 
images in these datasets are rectified and viewed in a front-parallel direction. Using these 
datasets are also unable to achieve promising results. Here, we propose a new dataset, which is 
the first one for window detection in street scenes. 

   

   

   
Fig. 1. Examples of our “Street Scene Window Detection (SSWD)” dataset set. Yellow bounding 

boxes are the annotated ground truth. 
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3. Street Scene Window Detection dataset 

3.1 Image Annotation 
The original street scene images of the SSWD dataset are selected from the Paris Street-View 
dataset [27] in which most of the images contain building elements, e.g. windows, balconies, 
etc. We collect more than one thousand images containing windows. All of the window 
instances are annotated by expert annotators and saved in a way similar to Pascal VOC [28] 
object detection dataset. We randomly divide Street Scene Window Detection dataset into a 
training set (1000 images), validation set (200 images), and test set (100 images). 

3.2 Dataset Statistics 
We discuss the SSWD dataset with more statistical details. First is the number of windows in 
each image. Our SSWD dataset has an average of 7.25 window instance per image. The 
interval statistics on the number of windows per image are shown in Fig. 2 (a). It can be seen 
that the SSWD dataset not only has a wide range of window numbers but also has multiple 
instances in most of the images. The data distribution of window size is shown in Fig. 2 (b), 
from which we can see that the width and height of the window instances have large ranges as 
real cases. 
 
 

 

 

 
(a) Statistics on the number of windows per 

image 
(b) The data distribution of window size 

Fig. 2. Statistics of the SSWD dataset. 

4. Window detection Architecture 
In this section, we present our window detection architecture which mainly involves a window 
detection network (WD-Net) and a post optimization method. The overview of our window 
detection framework is shown in Fig. 3. Given a facade image, a backbone VGGNet [21] 
extracts features that are further enhanced by the Context Enhancement Module (CEM). The 
enhanced features are fed into Window RPN and RoI Feature Fusion (RFF). Specifically, for 
each proposal region from Window RPN, feature vectors of fixed length are extracted from 
VGGNet. RoI feature fusion fuses these multi-scale features adaptively. Each feature vector 
fused by RoI feature fusion is then fed into a sequence of fully connected (FC) layers that 
perform classification (Cls) and regression (Reg) for the corresponding proposal region. With 
the detection results provided by WD-Net, we further propose a post optimization method that 
includes Clustering and Voting to detect the missed windows. 



860                                                                                                                         Ma et al.: Deep Window Detection in Street Scenes 

 

 
Fig. 3. Overall framework of the proposed window detection approach. 

 

4.1 Window detection network  
Our window detection network, called WD-Net, is inspired by the two-stage object detector 
Faster R-CNN [14]. Different from Faster R-CNN, our WD-Net has two novel architectural 
changes. The first one contains the window region proposal network (Window RPN) and RoI 
Feature Fusion (RFF). Window RPN is a specially designed module for detecting windows 
according to the actual sizes of window instances. RFF combines the details from the 
low-level layer and context from the high-level layer. The second one is the Context 
Enhancement Module (CEM). Multi-scale features generated from VGGNet are enhanced by 
the proposed CEM which diversifies the receptive fields. The details of window detection 
networks are shown in Fig. 4. 
 
 

 
 
Fig. 4. The overall architecture of our window detection network. VGGNet is the backbone used to 
extract multi-scale features. The features are further enhanced by CEM. Window RPN focuses on 
proposal region generation through a classification and regression layer. RoI feature fusion first 

extracts fixed-length feature vectors from multi-scale features according to the proposals and then 
combines multi-scale features for fusion by concatenation. Each feature is fed into a sequence of fully 

connected layers that finally branches into predicting a score and offsets of a bounding box, 
respectively. 
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Window RPN 
The anchor configuration is crucial for object detector. For two stage-detector, such as Faster 
R-CNN [14], RPN uses anchors to regress locations of foreground objects, followed by 
another regression branch to refine the proposal bounding boxes. One-stage detectors, such as 
RetinaNet [17], uses anchors to regress the bounding boxes of objects directly. For window 
detection, we design a special anchor configuration for the window detector. The RPN is a 
proposal region generator in Faster R-CNN, which is class-agnostic for all of the objects in 
images. For window detection as ours, the original RPN cannot provide satisfactory results 
due to the challenges in window detection. Therefore, a special window region proposal 
network module is proposed. 

Following Faster R-CNN, our Window RPN is built on the top layer of the feature map 
(conv5_3 in VGGNet). It is followed by an intermediate 3×3 convolutional layer and two 
siblings 1×1 convolutional layer for bounding box regression and classification, respectively. 
In particular, the stride of the output feature is 16. Faster R-CNN adopts 9 anchor boxes with 3 
aspect ratios of 1:1, 1:2 and 2:1, with box areas of 1282, 2562, 5122, the area of each anchor is 
shown in Table 1. In window detection, we obtain the size distribution of width and height 
from Fig. 2 (b). We sample three proposal sizes ([40, 60], [70, 110], [110, 180]) which occur 
most frequently in SSWD dataset. By combining the original anchors with the three new 
anchors, our new anchor strategy is formed. Our new anchors are listed in Table 1 and the 
visual differences are shown in Fig. 5. 

  
Faster R-CNN 

 
WD-Net (Ours) 

Fig. 5. Comparison of two anchor strategies. The left is used in Faster R-CNN, the right is used in our 
WD-Net, the black rectangles in the right image are the special anchor designed for window 

detection. 
 
 

Table 1. Size of anchors in Faster R-CNN and our new anchors 
Method Ratio=0.5 Ratio=1.0 Ratio=2.0 

 
Faster R-CNN 

184×96 128×128 88×176 
368×192 256×256 176×352 
736×384 512×512 352×704 

Our new anchors 40×60 70×110 110×180 
 
 
RoI Feature Fusion 
Windows in the wild always have various scales and may be seriously occluded by trees or 
cars. Faster R-CNN adopts the top layer feature map (conv5_3) which is not robust enough to 
detect windows. We address this problem by RoI Feature Fusion (RFF). RFF tackles scale 
variations of windows by incorporating low-level features and occlusions by enhancing the 
context of high-level features. 

Through a backbone network, the feature map of each layer is extracted. The low-level 
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feature map often has detail information, such as edges and textures, which lack a semantic 
context. On the contrary, the high-level feature map represents rich semantics but the detail 
information is rare. In order to aggregate the information of different level layers, RFF adopts 
conv4_3 and conv5_3 from the backbone instead of using conv5_3 alone. Conv4_3 provides 
more detail information for detecting some tiny windows and Conv5_3 provides abundant 
semantic context which is useful to recognize windows. Some regions of interest (RoI) are 
extracted from conv4_3 and conv5_3 according to the proposals from Window RPN. We 
resize each RoI with a fixed spatial size of 14×14 by RoIAlign [29] operation, followed by a 
max-pooling layer whose kernel size is 2 and stride is 2. After that, two feature maps with 7×7 
resolution are concatenated. The feature dimension is reduced by a 1×1 convolution. Then the 
new feature is fed into bounding box regression and classification module to determine the 
accurate coordinates and class label of the proposal region. 

 

 
 

Fig. 6. The structure of our Context Enhancement Module (CEM) adopts 1D convolution kernels to 
construct the rectangular receptive fields. 

 
Context Enhancement Module 
As we all know, the shapes of windows are almost rectangular and the layouts of windows are 
latticed. Nevertheless, the receptive fields obtained by the backbone are usually square which 
may hurt the detection results of windows. In order to diversify the receptive fields of features, 
we design a novel Context Enhancement Module (CEM) based on 1D convolutions. The 
details of the proposed CEM are shown in Fig. 6. We first reduce the channel number to one 
half of the previous layer by a 1×1 convolution layer. Then, we use 1×k and k×1 (k=3) to 
provide a rectangular receptive field. Through another two 1×1 convolution layer, the feature 
maps from two branches are concatenated together. Meanwhile, the intermediate features are 
further processed by another 1×k and k×1 (k=3) convolution to enhance the diversity of 
receptive fields. Finally, with the same concatenation, features are fused by element-addition. 
In particular, as our WD-Net, we use a cascaded CEM to enlarge the receptive field of 
conv4_3 and conv5_3 (see Fig. 4). Through the 1D convolutional kernels, some extreme 
window instances will be detected.  

 
Loss Function 
For training Window RPN, each anchor is assigned with a binary class label. An anchor is 
assigned with a positive label if the anchor has the highest Intersection-over-Union (IoU) 
overlap with a ground truth box or its IoU overlap with any ground truth box is higher than 0.7. 
An anchor is assigned with a negative label if its IoU overlap with any ground truth box is 
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lower than 0.3. We use the multi-task loss like the one in [14] to train our WD-Net, which is 
defined as follows: 
 

𝐿({𝑝𝑖}, {𝑡𝑖}) =  
1
𝑁𝑐𝑙𝑠

�  
𝑖

𝐿𝑐𝑙𝑠(𝑝𝑖 ,𝑝𝑖∗) +  𝜆
1

𝑁𝑟𝑒𝑔
�  𝑝𝑖∗𝐿𝑟𝑒𝑔
𝑖

(𝑡𝑖 , 𝑡𝑖∗) (1) 

 
where 𝑖  is the index of an anchor. 𝐿𝑐𝑙𝑠  is the soft-max loss function for classifying the 
windows and backgrounds. 𝑝𝑖 and 𝑝𝑖∗ are the predicted probability of anchor 𝑖 and the ground 
truth label, respectively. 𝐿𝑟𝑒𝑔  is the smooth L1 loss for regressing bounding boxes of windows. 
𝑝𝑖∗  is 1 only for the positive anchor. Otherwise, it is 0. The two term 𝐿𝑐𝑙𝑠  and 𝐿𝑟𝑒𝑔  are 
normalized by 𝑁𝑐𝑙𝑠  and 𝑁𝑟𝑒𝑔 , and controlled by the hyper-parameter 𝜆 . We set 𝜆 = 1  in 
experiments. 
The smooth L1 loss function used in regression of window bounding boxes is defined as 
follow: 
 

𝐿𝑟𝑒𝑔(𝑡, 𝑡∗) =  � 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡𝑖 −  𝑡𝑖∗) 
𝑖 ∈ {𝑥,𝑦,𝑤,ℎ}

 (2) 

  
𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) =  � 0.5𝑥2,         𝑖𝑓|𝑥| < 1

|𝑥| − 0.5,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� (3) 

 
where, 𝑡 and  𝑡∗ are predicted and ground truth bounding boxes, respectively. 𝑖 is the index of 
(𝑥,𝑦,𝑤,ℎ) which denotes the center coordinates, width and height of a bounding box. The 
smooth L1 loss used in object detection is more robust and less sensitive to outliers. 

4.2 Regular distribution based post optimization method (Post Processing) 
The window detection network outputs many candidate bounding boxes and the 
corresponding confidence scores. Some candidate boxes might be filtered out for the reason 
that its confidence score is lower than a pre-defined threshold. To address this problem, we 
present a post optimization method which utilizes the regularity of windows distribution. 
 

 
 

Fig. 7. Process of post optimization. The value in each box represents the confidence score as a 
window. c1, c2, c3 represent clusters of spacing distances. These blue arrows indicate the voting 

process. 
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We first obtain a set of window bounding boxes with higher confidence scores through 
WD-Net. Then the spacing distances of windows bounding boxes are calculated along with the 
horizontal and vertical directions, respectively. We also cluster these distances according to a 
threshold. Finally, we obtain distances between low confidence bounding boxes and high 
confidence bounding boxes. If a distance belongs to a cluster, the number of votes from high 
confidence bounding box increases. If a low confidence bounding box gets more than half of 
the votes, the bounding box is outputted as other high confidence bounding boxes. The process 
of post optimization method is illustrated in Fig. 7. By integrating the post optimization 
process, our window detection method is able to perform well by using both the powerful 
CNN detectors and the regular distribution of windows. 

5. Experiments 
In this section, we first provide some settings and metrics used in our experiments. Then, the 
experimental results with analyses are presented on both the ECP dataset and the proposed 
SSWD dataset. Finally, we verify the post optimization method. 

5.1 Experimental settings 
Training details: We perform experiments on the ECP dataset and the proposed SSWD 
dataset. In our WD-Net, we set the shorter edge of the input image to 600 pixels and the longer 
edge to no more than 1000 pixels. We adopt the VGGNet pre-trained on ImageNet [30] as the 
backbone of the model. Window RPN is used to propose candidate regions, and 256 anchors 
are sampled per image with a 1:3 ratio of positive to negative anchors. RoIAlign is adopted in 
all experiments. We use the Momentum optimizer to optimize the training loss with 0.9 
momentum and 0.0001 weight decay. The new parameters are initialized by Xaiver [31]. We 
only use standard horizontal flipping for data augmentations. Our model is trained on a single 
1080Ti GPU with an initial learning rate of 0.001.  
Inference: During testing, the input images are first resized as the training stage. The max 
number of detection is 100 and the confidence score is 0.05 per image. Non-maximum 
suppression (NMS) with a threshold of 0.3 is applied to all predictions. 
Metrics: To evaluate the detection results, we use the typical precision rate, recall rate and 
mean Average Precision(mAP): 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (4) 

  
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (5) 

 
where, TP, FP, FN denote the true positive, false positive and false negative, respectively. The 
standard Intersection over union (IoU) criterion is employed to evaluate the overlapping area 
of bounding boxes.  

 

𝑚𝐴𝑃 =  � 𝑃(𝑅)𝑑𝑅
1

0
 (6) 

 
 
where the 𝑃 and 𝑅 represent the precision rate and recall rate in the above. The mAP solves the 
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single-point value limitations of precision rate and recall rate. It is able to reflect the global 
performance of detection methods. 

5.2 Experiments on ECP Dataset 
ECP [26] is a pixel-wise classification dataset which contains 104 rectified images of facades 
of Haussmannian style buildings. The original dataset is used to parse facade into semantic 
elements, such as windows, doors, balconies, etc. To experiment on this dataset, we use the 
windows mask to create ground truth bounding boxes for the detection task. We randomly 
divide the ECP dataset into a training set (74 images) and test set (30 images) to evaluate the 
performance of window detectors. The sizes of windows in the ECP dataset are generally 
small. We modify the original anchor configuration to 9 anchor boxes with 3 aspect ratios of 
1:1, 1:2 and 2:1, and with box areas of 322, 642 and 1282. 

In Table 2, we present the detection results on the ECP dataset. There are four detection 
algorithms: original Faster R-CNN, our WD-Net without CEM, our WD-Net and our full 
method. Compared with Faster R-CNN, our WD-Net achieves better mAP, In addition, since 
we adopt CEM on WD-Net, there is a significant improvement compared with baseline. The 
full method achieves the best mAP among the four methods, in which the pyramid features can 
handle multi-size windows, CEM provides diverse receptive fields to better capture extreme 
window instances, and the regularity-based post optimization helps discover missed windows. 
 

Table 2. Detection results on the ECP dataset. Bold fonts indicate the best mAP. 
Method mAP (%) 

Faster R-CNN [14] 91.196 
WD-Net – CEM 91.431 
WD-Net  91.678 
WD-Net + Post 91.680 

 

    
Faster R-CNN WD-Net + Post Faster R-CNN WD-Net + Post 

Fig. 8. Qualitative results on the ECP dataset. Green boxes are predicted windows, and blue boxes 
are the missed ones. 

 
We show some visual experimental results on the ECP dataset in Fig. 8. The detection 

results (bounding box in green) are directly outputted by each method and the ground truth 
bounding boxes are in blue. Here, we compare the original Faster R-CNN with our full method. 
We can see that Faster R-CNN and our method have nearly the same performances on the ECP 
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dataset. Because all of the images in the ECP dataset are rectified and viewed in a frontal 
direction which makes the window detection task relatively easy. In the first column and 
second column, we can see that Faster R-CNN mistakes a part of the shop as a window. 
Furthermore, in the third and fourth column, the missed windows of our method are less than 
those of Faster R-CNN. This demonstrates that our new architecture with multiple scales 
features enhanced by context has advantages on window detection. 

5.3 Experiments on SSWD Dataset 
Table 3 summarizes detection results on the SSWD dataset of different methods. Faster 
R-CNN is a baseline setting. Then we incrementally add our improvements: Window RPN and 
RoI feature fusion, CEM and Post. Compared with Faster R-CNN, adding our new 
architecture improves the mAP. It shows that the Window RPN and RoI feature fusion are 
useful for detecting windows. The result is further improved by CEM. It is demonstrated that 
our CEM is helpful to capture various window shapes and distributions for better accuracy by 
multi-scale features with the diverse receptive fields. Finally, with our post optimization, some 
missed windows are detected by using the regular distribution of windows. 
 

Table 3. Detection results on the SSWD dataset. Bold fonts indicate the best mAP. 
Method mAP (%) 
Faster R-CNN [14] 92.542 
WD-Net – CEM   92.599 
WD-Net 92.862 
WD-Net + Post 93.086 

 
We showcase some detection results on the SSWD dataset in Fig. 9. The predicted detection 

results (bounding box in green) are directly outputted by each method and the ground truth 
bounding boxes are in blue. The first column of Fig. 9 shows that the detection results in the 
case of dense small windows, our method achieves better performances thanks to the 
multi-scale feature integration. The second column is the images with heavy occlusions. With 
the diverse receptive field obtained by our CEM, our WD-Net has advantages in these extreme 
window instances. As shown in the third column, window detection architecture can detect 
more windows which is missed by Faster R-CNN. 
 

 
Faster 

R-CNN 

   
 
 

WD-Net  
+ Post 

   
Fig. 9. Qualitative results of different methods on the SSWD dataset. Green boxes are predicted 

windows, and blue boxes are the missed ones. 
 

 

5.4 Experiments on Post Optimization Method 
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In Fig. 10, we demonstrate the performance of our post optimization method. Meanwhile, we 
apply our post processing after Faster R-CNN and our WD-Net. The threshold of high 
confidence score is set 0.05, and the low confidence score is set 0.01. The blue bounding boxes 
in the left column of Fig. 10  are the lost boxes by the two detection algorithms. We can also 
learn the confidence score at the right images that is lower than the standard threshold 0.05. 
Those low confidence boxes (blue box) are output as high confidence ones (corresponding 
green boxes in the right column), thanks to the post optimization method which uses the 
distribution regularity of windows to recheck these proposals. 
 

 Before post process After post process 

 
 
 

Faster R-CNN 

  
 
 

WD-Net 

  
Fig. 10. Qualitative results of different methods on the SSWD dataset. Green boxes are predicted 

windows, and blue boxes denote the missing ones. The number in each box denotes the confidence 
score. 

6. Conclusions 
In this paper, we proposed a Street Scene Window Detection dataset and an effective window 
detection architecture. As far as we know, SSWD is the largest dataset specially built for 
window detection task which might be helpful to the research community. Our window 
detection architecture mainly contains WD-Net and a post optimization method. WD-Net 
features a new anchor strategy designed by the width and height distribution of the dataset, an 
RoI feature fusion module that fuses multi-scale features and a context enhancement module 
that can diversify the receptive fields of features. The post optimization, relying on the regular 
distributions of windows of buildings can further detect missed windows. Experiments on our 
SSWD dataset and ECP dataset show that our method obtains state-of-the-art performance. 
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