• Title/Summary/Keyword: classification tree

Search Result 939, Processing Time 0.03 seconds

Application of Decision Tree for the Classification of Antimicrobial Peptide

  • Lee, Su Yeon;Kim, Sunkyu;Kim, Sukwon S.;Cha, Seon Jeong;Kwon, Young Keun;Moon, Byung-Ro;Lee, Byeong Jae
    • Genomics & Informatics
    • /
    • v.2 no.3
    • /
    • pp.121-125
    • /
    • 2004
  • The purpose of this study was to investigate the use of decision tree for the classification of antimicrobial peptides. The classification was based on the activities of known antimicrobial peptides against common microbes including Escherichia coli and Staphylococcus aureus. A feature selection was employed to select an effective subset of features from available attribute sets. Sequential applications of decision tree with 17 nodes with 9 leaves and 13 nodes with 7 leaves provided the classification rates of $76.74\%$ and $74.66\%$ against E. coli and S. aureus, respectively. Angle subtended by positively charged face and the positive charge commonly gave higher accuracies in both E. coli and S. aureusdatasets. In this study, we describe a successful application of decision tree that provides the understanding of the effects of physicochemical characteristics of peptides on bacterial membrane.

Destructive Test of a BLDC Motor Controller Utilizing a Modified Classification Tree Method (변형된 Classification Tree Method를 이용한 BLDC 모터제어기 파괴 시험)

  • Shin, Jae Hyuk;Chung, Ki Hyun;Choi, Kyung Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.6
    • /
    • pp.201-214
    • /
    • 2014
  • In this paper, we propose a test case generation method adequate to destructive test of the BLDC(Brush Less Direct Current) motor controller used for the MDPS(Motor Driven Power Steering) system embedded in an automobile. The proposed method is a modified CTM(Classification Tree Method). CTM generates test cases assuming that all inputs are equally important. Therefore, it is very hard to generate test cases for extreme situations. To overcome the drawback and generate test cases specialized for destructive test. a modified CTM that compensates the limitation of traditional CTM is proposed. The proposed method has an advantage that it can intensively generate the test scenarios adequate to extreme situations by combining the test cases generated by the transitional CTM the while keeping the merit of the traditional CTM. The test scenarios for destructive test for the MDPS system embedded in a commercial automobile are generated utilizing the proposed method. The effectiveness of the proposed algorithm is verified through the test.

Prediction method of slope hazards using a decision tree model (의사결정나무모형을 이용한 급경사지재해 예측기법)

  • Song, Young-Suk;Chae, Byung-Gon;Cho, Yong-Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1365-1371
    • /
    • 2008
  • Based on the data obtained from field investigation and soil testing to slope hazards occurrence section and non-occurrence section in gneiss area, a prediction technique was developed by the use of a decision tree model. The slope hazards data of Seoul and Kyonggi Province were 104 sections in gneiss area. The number of data applied in developing prediction model was 61 sections except a vacant value. The statistical analyses using the decision tree model were applied to the entrophy index. As the results of analyses, a slope angle, a degree of saturation and an elevation were selected as the classification standard. The prediction model of decision tree using entrophy index is most likely accurate. The classification standard of the selected prediction model is composed of the slope angle, the degree of saturation and the elevation from the first choice stage. The classification standard values of the slope angle, the degree of saturation and elevation are $17.9^{\circ}$, 52.1% and 320m, respectively.

  • PDF

Gesture Recognition Method using Tree Classification and Multiclass SVM (다중 클래스 SVM과 트리 분류를 이용한 제스처 인식 방법)

  • Oh, Juhee;Kim, Taehyub;Hong, Hyunki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.238-245
    • /
    • 2013
  • Gesture recognition has been widely one of the research areas for natural user interface. This paper presents a novel gesture recognition method using tree classification and multiclass SVM(Support Vector Machine). In the learning step, 3D trajectory of human gesture obtained by a Kinect sensor is classified into the tree nodes according to their distributions. The gestures are resampled and we obtain the histogram of the chain code from the normalized data. Then multiclass SVM is applied to the classified gestures in the node. The input gesture classified using the constructed tree is recognized with multiclass SVM.

Using CART to Evaluate Performance of Tree Model (CART를 이용한 Tree Model의 성능평가)

  • Jung, Yong Gyu;Kwon, Na Yeon;Lee, Young Ho
    • Journal of Service Research and Studies
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • Data analysis is the universal classification techniques, which requires a lot of effort. It can be easily analyzed to understand the results. Decision tree which is developed by Breiman can be the most representative methods. There are two core contents in decision tree. One of the core content is to divide dimensional space of the independent variables repeatedly, Another is pruning using the data for evaluation. In classification problem, the response variables are categorical variables. It should be repeatedly splitting the dimension of the variable space into a multidimensional rectangular non overlapping share. Where the continuous variables, binary, or a scale of sequences, etc. varies. In this paper, we obtain the coefficients of precision, reproducibility and accuracy of the classification tree to classify and evaluate the performance of the new cases, and through experiments to evaluate.

  • PDF

Fault Diagnosis of Induction Motors using Decision Trees (결정목을 이용한 유도전동기 결함진단)

  • Tran Van Tung;Yang Bo-Suk;Oh Myung-Suck
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.407-410
    • /
    • 2006
  • Decision tree is one of the most effective and widely used methods for building classification model. Researchers from various disciplines such as statistics, machine teaming, pattern recognition, and data mining have considered the decision tree method as an effective solution to their field problems. In this paper, an application of decision tree method to classify the faults of induction motors is proposed. The original data from experiment is dealt with feature calculation to get the useful information as attributes. These data are then assigned the classes which are based on our experience before becoming data inputs for decision tree. The total 9 classes are defined. An implementation of decision tree written in Matlab is used for four data sets with good performance results

  • PDF

Typical Classification of Rural Area Considering Settlement Environment by Decision Tree Method (정주여건을 고려한 의사결정나무기법 활용 농촌지역 유형화)

  • Bae, Seung-Jong;Kim, Dae-Sik;Eun, Sang-Kyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.79-92
    • /
    • 2016
  • The objective of this study is to classify the types of rural areas (138 $si{\cdot}gun$) considering settlement environment by Decision Tree Method (CHAID). The CHAID method was used for decision tree algorithm and the seven dependant variables and 5 explanatory variables were selected, respectively. By decision tree method, rural areas were finally classified into six groups through three separate processes. City area, lower area in aging rate and higher area in farmland area ratio was analyzed to be relatively rich rather than other area in the case of settlement environment index. In the future, this study will be able to utilize as a reference to the planning of rural development projects.

THE PERFORMANCE OF THE BINARY TREE CLASSIFIER AND DATA CHARACTERISTICS

  • Park, Jeong-sun
    • Management Science and Financial Engineering
    • /
    • v.3 no.1
    • /
    • pp.39-56
    • /
    • 1997
  • This paper applies the binary tree classifier and discriminant analysis methods to predicting failures of banks and insurance companies. In this study, discriminant analysis is generally better than the binary tree classifier in the classification of bank defaults; the binary tree is generally better than discriminant analysis in the classification of insurance company defaults. This situation can be explained that the performance of a classifier depends on the characteristics of the data. If the data are dispersed appropriately for the classifier, the classifier will show a good performance. Otherwise, it may show a poor performance. The two data sets (bank and insurance) are analyzed to explain the better performance of the binary tree in insurance and the worse performance in bank; the better performance of discriminant analysis in bank and the worse performance in insurance.

  • PDF

A methodology for Internet Customer segmentation using Decision Trees

  • Cho, Y.B.;Kim, S.H.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.206-213
    • /
    • 2003
  • Application of existing decision tree algorithms for Internet retail customer classification is apt to construct a bushy tree due to imprecise source data. Even excessive analysis may not guarantee the effectiveness of the business although the results are derived from fully detailed segments. Thus, it is necessary to determine the appropriate number of segments with a certain level of abstraction. In this study, we developed a stopping rule that considers the total amount of information gained while generating a rule tree. In addition to forwarding from root to intermediate nodes with a certain level of abstraction, the decision tree is investigated by the backtracking pruning method with misclassification loss information.

  • PDF

A Study on the Deep Learning-based Tree Species Classification by using High-resolution Orthophoto Images (고해상도 정사영상을 이용한 딥러닝 기반의 산림수종 분류에 관한 연구)

  • JANG, Kwangmin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • In this study, we evaluated the accuracy of deep learning-based tree species classification model trained by using high-resolution images. We selected five species classed, i.e., pine, birch, larch, korean pine, mongolian oak for classification. We created 5,000 datasets using high-resolution orthophoto and forest type map. CNN deep learning model is used to tree species classification. We divided training data, verification data, and test data by a 5:3:2 ratio of the datasets and used it for the learning and evaluation of the model. The overall accuracy of the model was 89%. The accuracy of each species were pine 95%, birch 89%, larch 80%, korean pine 86% and mongolian oak 98%.