• 제목/요약/키워드: classification efficiency

검색결과 808건 처리시간 0.022초

Wood Classification of Japanese Fagaceae using Partial Sample Area and Convolutional Neural Networks

  • FATHURAHMAN, Taufik;GUNAWAN, P.H.;PRAKASA, Esa;SUGIYAMA, Junji
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권5호
    • /
    • pp.491-503
    • /
    • 2021
  • Wood identification is regularly performed by observing the wood anatomy, such as colour, texture, fibre direction, and other characteristics. The manual process, however, could be time consuming, especially when identification work is required at high quantity. Considering this condition, a convolutional neural networks (CNN)-based program is applied to improve the image classification results. The research focuses on the algorithm accuracy and efficiency in dealing with the dataset limitations. For this, it is proposed to do the sample selection process or only take a small portion of the existing image. Still, it can be expected to represent the overall picture to maintain and improve the generalisation capabilities of the CNN method in the classification stages. The experiments yielded an incredible F1 score average up to 93.4% for medium sample area sizes (200 × 200 pixels) on each CNN architecture (VGG16, ResNet50, MobileNet, DenseNet121, and Xception based). Whereas DenseNet121-based architecture was found to be the best architecture in maintaining the generalisation of its model for each sample area size (100, 200, and 300 pixels). The experimental results showed that the proposed algorithm can be an accurate and reliable solution.

건설현장에서 발생하는 폐기물 인식 모델 개발 (Development of a waste recognition model at construction sites)

  • 나승욱;허석재
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.219-220
    • /
    • 2021
  • It is considered that the construction industry is one of the pivotal players in the national economy in terms of Gross Domestic Production (GDP) and employment. Behind the positive role of this industrial sector to the national economy, the construction industry generates approximately 50 % of the total waste generation from all the industrial sectors. There are several measures to mitigate the adverse impacts of the construction waste such as reduce, reuse and recycle. Recycling would be one of the effective strategies for waste minimisation, which would be able to reduce the demand upon new resources as well as enhance reusing the construction materials on sites. The automated construction waste classification system would make it possible not only to reduce the amount of labour input but also mitigate the possibility of errors during the manual classification process. In this study, we proposed an automated waste segmentation and classification system for recycling the construction and demolition waste in the real construction site context. Since the practical application to the real-world construction sites was one of the significant factors to develop the system, a YOLACT (You Only Look At CoefficienTs) algorithm was chosen to conduct the study. In this study, it is expected that the proposed system would make it possible to enhance the productivity as well as the cost efficiency by reducing the manpower for the construction and demolition waste management at the construction site.

  • PDF

전이학습 기반 콘크리트의 다양한 결함 분류에 관한 연구 (A study on the classification of various defects in concrete based on transfer learning)

  • 윤영근;오태근
    • 문화기술의 융합
    • /
    • 제9권2호
    • /
    • pp.569-574
    • /
    • 2023
  • 콘크리트 구조물의 적절한 유지관리를 위해서 다양한 결함에 대해 사전에 파악하고 유지관리하는 것이 필요하다. 현재 방법으로는 규모가 큰 사회기반시설물의 점검 시 효율성, 안전성, 신뢰성에 문제가 있어 새로운 점검 방식의 도입이 필요하다. 최근에는 영상에 대한 딥러닝 기술이 발달함에 따라 콘크리트 결함 분류 연구가 활발히 진행되고 있다. 하지만, 균열 외에 오염과 박락 등에 대한 연구는 제한적이다. 본 연구에서는 사전에 학습된 딥러닝 모델에 대한 전이학습을 통한 다양한 콘크리트 결함 유형 분류 모델을 개발하고, 정확도를 저하시키는 요인을 도출 및 향후 발전 방향을 제시하였다. 이는 향후 콘크리트 유지관리 분야에서 활용도가 높을 것으로 예상된다.

Improving Chest X-ray Image Classification via Integration of Self-Supervised Learning and Machine Learning Algorithms

  • Tri-Thuc Vo;Thanh-Nghi Do
    • Journal of information and communication convergence engineering
    • /
    • 제22권2호
    • /
    • pp.165-171
    • /
    • 2024
  • In this study, we present a novel approach for enhancing chest X-ray image classification (normal, Covid-19, edema, mass nodules, and pneumothorax) by combining contrastive learning and machine learning algorithms. A vast amount of unlabeled data was leveraged to learn representations so that data efficiency is improved as a means of addressing the limited availability of labeled data in X-ray images. Our approach involves training classification algorithms using the extracted features from a linear fine-tuned Momentum Contrast (MoCo) model. The MoCo architecture with a Resnet34, Resnet50, or Resnet101 backbone is trained to learn features from unlabeled data. Instead of only fine-tuning the linear classifier layer on the MoCopretrained model, we propose training nonlinear classifiers as substitutes for softmax in deep networks. The empirical results show that while the linear fine-tuned ImageNet-pretrained models achieved the highest accuracy of only 82.9% and the linear fine-tuned MoCo-pretrained models an increased highest accuracy of 84.8%, our proposed method offered a significant improvement and achieved the highest accuracy of 87.9%.

Malwares Attack Detection Using Ensemble Deep Restricted Boltzmann Machine

  • K. Janani;R. Gunasundari
    • International Journal of Computer Science & Network Security
    • /
    • 제24권5호
    • /
    • pp.64-72
    • /
    • 2024
  • In recent times cyber attackers can use Artificial Intelligence (AI) to boost the sophistication and scope of attacks. On the defense side, AI is used to enhance defense plans, to boost the robustness, flexibility, and efficiency of defense systems, which means adapting to environmental changes to reduce impacts. With increased developments in the field of information and communication technologies, various exploits occur as a danger sign to cyber security and these exploitations are changing rapidly. Cyber criminals use new, sophisticated tactics to boost their attack speed and size. Consequently, there is a need for more flexible, adaptable and strong cyber defense systems that can identify a wide range of threats in real-time. In recent years, the adoption of AI approaches has increased and maintained a vital role in the detection and prevention of cyber threats. In this paper, an Ensemble Deep Restricted Boltzmann Machine (EDRBM) is developed for the classification of cybersecurity threats in case of a large-scale network environment. The EDRBM acts as a classification model that enables the classification of malicious flowsets from the largescale network. The simulation is conducted to test the efficacy of the proposed EDRBM under various malware attacks. The simulation results show that the proposed method achieves higher classification rate in classifying the malware in the flowsets i.e., malicious flowsets than other methods.

초등학교 6학년의 인공자극과 자연자극에 대한 분류 사고 (Classification Activity Thoughts of Elementary Sixth Grade Pupils about Artificial and Natural Stimulus)

  • 최현동;양일호;권치순
    • 한국과학교육학회지
    • /
    • 제26권1호
    • /
    • pp.40-48
    • /
    • 2006
  • 이 연구의 목적은 초등학교 6학년 학생의 분류활동에서 나타나는 사고 유형, 과정과 특징을 분석하는 것이다. 이러한 목적을 달성하기 위하여 분류활동 수행에 적합한 2가지 도구를 개발하였다. 첫 번째는 속성이 분명하게 드러나는 인공자극카드이고, 두 번째는 속성이 잘 드러나지 않는 자연자극카드이다. 서울시 영등포구 소재 D초등학교 6학년 8명을 대상으로 질적 연구를 수행하였다. 자료는 피험자의 과제 수행과정을 녹화한 비디오테이프, 피험자의 분류 기록지, 연구자의 피험자 행동 관찰, 피험자와의 면담 등 자료 삼각측정법에 의해 획득하였다. 연구결과, 6학년 학생들은 분류활동에서 속성 관찰, 속성 평가, 예비 점검, 기준 선택, 샘플 동정의 다섯 가지 유형의 사고를 하였으며, 모든 항목을 분류할 때까지 속성 관찰 $\rightarrow$ 속성 평가 $\rightarrow$ 예비 점검 $\rightarrow$ 기준 선택 $\rightarrow$ 샘플 동정의 과정을 반복하였다. 그리고 인지 경제성을 활용하여 분류하여 분류하였다. 이상의 연구 결과는 과학 분류 학습 지도에 다음과 같은 시사점을 줄 수 있다. 첫째,교사가 학생들의 분류 사고과정을 이해한다면, 보다 효과적인 분류학습 지도가 가능할 것이다. 둘째, 분류사고 과정의 각 단계를 고려한 단계별 학습지도가 필요하다.

토픽모델링과 딥 러닝을 활용한 생의학 문헌 자동 분류 기법 연구 (A Study of Research on Methods of Automated Biomedical Document Classification using Topic Modeling and Deep Learning)

  • 육지희;송민
    • 정보관리학회지
    • /
    • 제35권2호
    • /
    • pp.63-88
    • /
    • 2018
  • 본 연구는 LDA 토픽 모델과 딥 러닝을 적용한 단어 임베딩 기반의 Doc2Vec 기법을 활용하여 자질을 선정하고 자질집합의 크기와 종류 및 분류 알고리즘에 따른 분류 성능의 차이를 평가하였다. 또한 자질집합의 적절한 크기를 확인하고 문헌의 위치에 따라 종류를 다르게 구성하여 분류에 이용할 때 높은 성능을 나타내는 자질집합이 무엇인지 확인하였다. 마지막으로 딥 러닝을 활용한 실험에서는 학습 횟수와 문맥 추론 정보의 유무에 따른 분류 성능을 비교하였다. 실험문헌집단은 PMC에서 제공하는 생의학 학술문헌을 수집하고 질병 범주 체계에 따라 구분하여 Disease-35083을 구축하였다. 연구를 통하여 가장 높은 성능을 나타낸 자질집합의 종류와 크기를 확인하고 학습 시간에 효율성을 나타냄으로써 자질로의 확장 가능성을 가지는 자질집합을 제시하였다. 또한 딥 러닝과 기존 방법 간의 차이점을 비교하고 분류 환경에 따라 적합한 방법을 제안하였다.

임상 분류 정확도 향상을 위한 영상 알고리즘 변별력 실증 연구 -KOMPSAT-MSC를 이용한 경주지역을 대상으로- (An Empirical Study on Discrimination of Image Algorithm for Improving the Accuracy of Forest Type Classification -Case of Gyeongju Area Using KOMPSAT-MSC Image Data-)

  • 조윤원;김성재;조명희
    • 대한공간정보학회지
    • /
    • 제17권2호
    • /
    • pp.55-60
    • /
    • 2009
  • 본 연구에서는 경주시 내남면을 대상으로 KOMPSAT-2 MSC(Multi Spectral Camera) 영상(2007.06.12)을 기반으로 NDVI(Normalized Difference Vegetation Index)와 TCT(Tasseled-Cap Transformation) 영상 알고리즘을 적용하여 DN 분포도를 작성 하였다. NDVI 및 TCT DN 분포도와 산림 현장 조사 결과와의 비교 분석을 통하여 임상 분류 정확도 향상을 위한 영상 알고리즘 변별력 분석을 수행하고 마지막으로 현장조사 자료와의 중첩 분석을 통하여 임상분류 정확성을 검증 하였다. 본 연구를 통하여 KOMPSAT-2 MSC 영상을 이용하여 임상 분류 자동화 실용성에 대한 검토와 정밀 산림 임상도 제작과정에서 저비용 고효율성을 기대할 수 있으리라 사료된다.

  • PDF

자질 선정 기준과 가중치 할당 방식간의 관계를 고려한 문서 자동분류의 개선에 대한 연구 (An Empirical Study on Improving the Performance of Text Categorization Considering the Relationships between Feature Selection Criteria and Weighting Methods)

  • 이재윤
    • 한국문헌정보학회지
    • /
    • 제39권2호
    • /
    • pp.123-146
    • /
    • 2005
  • 이 연구에서는 문서 자동분류에서 분류자질 선정과 가중치 할당을 위해서 일관된 전략을 채택하여 kNN 분류기의 성능을 향상시킬 수 있는 방안을 모색하였다. 문서 자동 분류에서 분류자질 선정 방식과 자질 가중치 할당 방식은 자동분류 알고리즘과 함께 분류성능을 좌우하는 중요한 요소이다. 기존 연구에서는 이 두 방식을 결정할 때 상반된 전략을 사용해왔다. 이 연구에서는 색인파일 저장공간과 실행시간에 따른 분류성능을 기준으로 분류자질 선정 결과를 평가해서 기존 연구와 다른 결과를 얻었다. 상호정보량과 같은 저빈도 자질 선호 기준이나 심지어는 역문헌빈도를 이용해서 분류 자질을 선정하는 것이 kNN 분류기의 분류 효과와 효율 면에서 바람직한 것으로 나타났다. 자질 선정기준으로 저빈도 자질 선호 척도를 자질 선정 및 자질 가중치 할당에 일관되게 이용한 결과 분류성능의 저하 없이 kNN 분류기의 처리 속도를 약 3배에서 5배정도 향상시킬 수 있었다.

접촉식 센서 데이터를 이용한 지질 특성 추출 및 지질 분류 (Terrain Feature Extraction and Classification using Contact Sensor Data)

  • 박병곤;김자영;이지홍
    • 로봇학회논문지
    • /
    • 제7권3호
    • /
    • pp.171-181
    • /
    • 2012
  • Outdoor mobile robots are faced with various terrain types having different characteristics. To run safely and carry out the mission, mobile robot should recognize terrain types, physical and geometric characteristics and so on. It is essential to control appropriate motion for each terrain characteristics. One way to determine the terrain types is to use non-contact sensor data such as vision and laser sensor. Another way is to use contact sensor data such as slope of body, vibration and current of motor that are reaction data from the ground to the tire. In this paper, we presented experimental results on terrain classification using contact sensor data. We made a mobile robot for collecting contact sensor data and collected data from four terrains we chose for experimental terrains. Through analysis of the collecting data, we suggested a new method of terrain feature extraction considering physical characteristics and confirmed that the proposed method can classify the four terrains that we chose for experimental terrains. We can also be confirmed that terrain feature extraction method using Fast Fourier Transform (FFT) typically used in previous studies and the proposed method have similar classification performance through back propagation learning algorithm. However, both methods differ in the amount of data including terrain feature information. So we defined an index determined by the amount of terrain feature information and classification error rate. And the index can evaluate classification efficiency. We compared the results of each method through the index. The comparison showed that our method is more efficient than the existing method.