• Title/Summary/Keyword: classic shell theory

Search Result 9, Processing Time 0.026 seconds

Vibration of sumberged functionally graded cylindrical shell based on first order shear deformation theory using wave propagation method

  • Farahani, Hossein;Barati, Farzan
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.575-587
    • /
    • 2015
  • This paper focuses on vibration analysis of functionally graded cylindrical shell submerged in an incompressible fluid. The equation is established considering axial and lateral hydrostatic pressure based on first order shear deformation theory of shell motion using the wave propagation approach and classic Fl$\ddot{u}$gge shell equations. To study accuracy of the present analysis, a comparison carried out with a known data and the finite element package ABAQUS. With this method the effects of shell parameters, m, n, h/R, L/R, different boundary conditions and different power-law exponent of material of functionally graded cylindrical shells, on the frequencies are investigated. The results obtained from the present approach show good agreement with published results.

On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells

  • Mirjavadi, Sayed Sajad;Bayani, Hassan;Khoshtinat, Navid;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.631-640
    • /
    • 2020
  • In this paper, nonlinear vibration behaviors of multi-phase Magneto-Electro-Elastic (MEE) doubly-curved nanoshells have been studied employing Jacobi elliptic function method. The doubly-curved nanoshell has been modeled by using nonlocal elasticity and classic shell theory. An exact estimation of nonlinear vibrational behavior of smart doubly-curved nanoshell has been obtained via Jacobi elliptic function method. This method can incorporate the influences of higher order harmonics leading to an exact estimation of nonlinear vibration frequency. It will be indicated that nonlinear vibrational frequency of doubly-curved nanoshell relies on nonlocal effect, material composition, curvature radius, center deflection and electro-magnetic field.

Seismic response of pipes under the effect of fluid based on exact solution

  • Liu, Yanbing;Khadimallah, Mohamed Amine;Behshad, Amir
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.431-437
    • /
    • 2022
  • One of the best choice for transportation of oil and gas at the end of rivers or seas is concrete pipelines. In this article, a concrete pipe at the end of river is assumed under the earthquake load. The Classic shell theory is applied for the modelling and the corresponding motion equations are derived by energy method. An external force induced by fluid around the pipe is asssumed in the final motion equations. For the solution of motion equations, the differential quadrature method (DQM) and Newmark method are applied for deriving the dynamic deflection of the pipe. The effects of various parameters including boundary conditions, fluid and length to thickness ratio are presented on the seismic response of the concrete pipe. The outcomes show that the clamped pipe has lower dynamic deflection with respect to simply pipe. In addition, with the effect of fluid, the dynamic defelction is increased significantly.

Seismic response of pipes under the effect of fluid based on exact solution

  • Liu, Yanbing;Khadimallah, Mohamed Amine;Behshad, Amir
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.439-445
    • /
    • 2022
  • One of the best choice for transportation of oil and gas at the end of rivers or seas is concrete pipelines. In this article, a concrete pipe at the end of river is assumed under the earthquake load. The Classic shell theory is applied for the modelling and the corresponding motion equations are derived by energy method. An external force induced by fluid around the pipe is asssumed in the final motion equations. For the solution of motion equations, the differential quadrature method (DQM) and Newmark method are applied for deriving the dynamic deflection of the pipe. The effects of various parameters including boundary conditions, fluid and length to thickness ratio are presented on the seismic response of the concrete pipe. The outcomes show that the clamped pipe has lower dynamic deflection with respect to simply pipe. In addition, with the effect of fluid, the dynamic defelction is increased significantly.

A Study of Literature Review on Chinese Pediatrics (중국(中國) 소아과학(小兒科學)의 사적(史的) 고찰(考察)(고대(古代)부터 청대(淸代)까지))

  • Lee Hoon;Lee Jin-Yong
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.13 no.1
    • /
    • pp.63-138
    • /
    • 1999
  • From all possible chinese medical literatures, I studied the history of chinese pediatrics by dividing into Chunqiu Zhanguo, QinHan dynasties, LiangJin, SuiTang five dynasties, Song Dynasty, Jin and Yuan dynasties, Ming Qing dynasties. The conclusions are summarized as followings 1. The mentions related with pediatrics existed already in Yan ruins turtle shell letters, and 〈Yellow Emperor's classic of internal medicine> in Chunqiu Zhanguo time formed the system of medicine, established the theoretical foundation. 2. Chang Ji established the system of diagnosis and treatment based on overall analysis of symptoms and signs in , and later pediatricians commonly applied his prescriptions to the febrile diseases. 3. The period from LiangJin to SuiTang, Pediatrics was established as special department then in , Chao Yuanfang stated the etiology, pathogenesis, symptomatology of pediatric diseases. 4. In Song dynasty. pediatric 4 major, symptoms that had been mentioned from SuiTang dynasties, were clearly established, pediatrical special books were published, and written by Qian Yi who is considered as the founder of chinese pediatrics, established the foundation of pediatrical division formation in distinction from adult fields. 5. In Jin and Yuan dynasties, four eminent physicians established the actual relationship between the theories and practical applications and insisted various and creative theories based on the classical medicine, for example, the theory that fire and heat in the body was the main cause of diseases of Liu Wansu purgation theory of Zhang Congzheng, qi regulating theory of Liu Gao, ministerial fire theory and the theory that yang is ever in excess while Yin is ever deficient of Zhu Zhenheng, etc, and they applied those theories to pediatrical various sides. 6, In Ming Qing dynasties, pediatrical specialists and pediatrical publications had increased, eg, father and son Xue Kai Xue Ji, Wan Quan, Lu Bai-si, etc in Ming dynasty, Ye Gui, Chen Fuzheng, Xia Ding, etc in Qing dynasty were famous as pediatricians. Specially, the doctrine of epidemic febrile diseases at that time showed prominent effects to children's epidemic febrile diseases.

  • PDF

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF

Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.717-726
    • /
    • 2018
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that $SiO_2$ nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as $SiO_2$ nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of $SiO_2$ nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

Earthquake response of nanocomposite concrete pipes conveying and immersing in fluid using numerical methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.125-135
    • /
    • 2019
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that SiO2 nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as SiO2 nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of SiO2 nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

The Posthuman Queer Body in Ghost in the Shell (1995) (<공각기동대>의 현재성과 포스트휴먼 퀴어 연구)

  • Kim, Soo-Yeon
    • Cross-Cultural Studies
    • /
    • v.40
    • /
    • pp.111-131
    • /
    • 2015
  • An unusual success engendering loyalty among cult fans in the United States, Mamoru Oshii's 1995 cyberpunk anime, Ghost in the Shell (GITS) revolves around a female cyborg assassin named Motoko Kusanagi, a.k.a. "the Major." When the news came out last year that Scarlett Johansson was offered 10 million dollars for the role of the Major in the live action remake of GITS, the frustrated fans accused DreamWorks of "whitewashing" the classic Japanimation and turning it into a PG-13 film. While it would be premature to judge a film yet to be released, it appears timely to revisit the core achievement of Oshii's film untranslatable into the Hollywood formula. That is, unlike ultimately heteronormative and humanist sci-fi films produced in Hollywood, such as the Matrix trilogy or Cloud Atlas, GITS defies a Hollywoodization by evoking much bafflement in relation to its queer, posthuman characters and settings. This essay homes in on Major Kusanagi's body in order to update prior criticism from the perspectives of posthumanism and queer theory. If the Major's voluptuous cyborg body has been read as a liberating or as a commodified feminine body, latest critical work of posthumanism and queer theory causes us to move beyond the moralistic binaries of human/non-human and male/female. This deconstruction of binaries leads to a radical rethinking of "reality" and "identity" in an image-saturated, hypermediated age. Viewed from this perspective, Major Kusanagi's body can be better understood less as a reflection of "real" women than as an embodiment of our anxieties on the loss of self and interiority in the SNS-dominated society. As is warned by many posthumanist and queer critics, queer and posthuman components are too often used to reinforce the human. I argue that the Major's hybrid body is neither a mere amalgam of human and machine nor a superficial postmodern blurring of boundaries. Rather, the compelling combination of individuality, animality, and technology embodied in the Major redefines the human as always, already posthuman. This ethical act of revision-its shifting focus from oppressive humanism to a queer coexistence-evinces the lasting power of GITS.