References
- Farahani, H., Azarafza, R. and Barati, F. (2014), "Mechanical buckling of a functionally graded cylindrical shell with axial and circumferential stiffeners using the third-order shear deformation theory", Comptes Rendus Mecanique, 342(9), 501-512. https://doi.org/10.1016/j.crme.2014.04.001
- Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X
- Askaria, E. and Jeongb, K.H. (2010), "Hydroelastic vibration of a cantilever cylindrical shell partially submerged in a liquid", Ocean Eng., 37(11-12), 1027-1035. https://doi.org/10.1016/j.oceaneng.2010.03.016
- Saijyou, K. (2006), "Dominant modes of submerged thin cylindrical shells", Appl. Acoust., 67(10), 1031-1043. https://doi.org/10.1016/j.apacoust.2006.01.008
- Iakovleva, S., Seatona, C.T. and Sigristb, J.F. (2013), "Submerged circular cylindrical shell subjected to two consecutive shock waves: Resonance-like phenomena", J. Fluid. Struct., 42, 70-87. https://doi.org/10.1016/j.jfluidstructs.2013.03.010
- Sharma, C.B., Darvizeh, M. and Darvizeh, A. (1998), "Natural frequencies response of vertical cantilever composite shells containing fluid", Eng. Struct., 20(8), 732-737. https://doi.org/10.1016/S0141-0296(97)00102-8
- Amabili, M. (1996), "Free vibration of partially filled horizontal cylindrical shells", J. Sound Vib., 191(5), 757-780. https://doi.org/10.1006/jsvi.1996.0154
- Amabili, M. (1999), "Vibrations of circular tubes and shells filled and partially immersed in a dense fluids", J. Sound Vib., 221(4), 567-585. https://doi.org/10.1006/jsvi.1998.2050
- Askari, E., Daneshmand, F. and Amabili, M. (2011), "Coupled vibrations of a partially fluid-filled cylindrical container with an internal body including the effect of free surfacewaves", J. Fluid. Struct., 27(4), 1049-1067. https://doi.org/10.1016/j.jfluidstructs.2011.04.010
- Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001a), "Coupled vibration analysis of fluid-filled cylindrical shells using the wave propagation approach", Appl. Acoust., 62(3), 229-243. https://doi.org/10.1016/S0003-682X(00)00045-1
- Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001b), "Vibration analysis of cylindrical shells using the wave propagation approach", J. Sound Vib., 239 (3), 397-401. https://doi.org/10.1006/jsvi.2000.3139
- Zhang, X.M. (2002), "Frequency analysis of submerged cylindrical shells with the wave propagation approach", Int. J. Mech. Sci., 44(7), 1259-1273. https://doi.org/10.1016/S0020-7403(02)00059-0
- Koo, J.R., Kwak, M.K., Song, O.S. and Bae, C.H. (2011), "Vibration analysis for partial lyimmersed shell structure in water with gap from bottom", Tran. Korean Soc. Nois. Vib. Eng., 21(10), 905-915. (in Korean) https://doi.org/10.5050/KSNVE.2011.21.10.905
- Kwak, M.K., Koo, J.R. and Bae, C.H. (2011), "Free vibration analysis of a hung clamped-free cylindrical shell partially submerged in fluid", J. Fluid. Struct., 27 (2), 283-296. https://doi.org/10.1016/j.jfluidstructs.2010.11.005
- Arshad, S.H., Naeem, M.N., Sultana, N., Iqbal, Z. and Shah, A.G. (2010), "Vibration of bilayered cylindrical shells with the layers of different materials", J. Mech. Sci. Tech., 24(3), 805-810. https://doi.org/10.1007/s12206-010-0122-0
- Flugge, W. (1973), Stressesin Shells, Second Edition, Springer, Verlag, NewYork.
- Love, A.E.H. (1952), A Treatise on the Mathematical Theory of Elasticity, 4th Edition, Cambridge: Cambridge University Press.
- Morse, P.M. and Ingard, K.U. (1968), Theoretical Acoustics, McGraw-Hill Book Company, New York.
Cited by
- Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation vol.60, pp.6, 2016, https://doi.org/10.12989/sem.2016.60.6.1063
- An analytical solution for bending and vibration responses of functionally graded beams with porosities vol.25, pp.4, 2015, https://doi.org/10.12989/was.2017.25.4.329
- An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions vol.16, pp.1, 2015, https://doi.org/10.12989/gae.2018.16.1.001
- Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution vol.24, pp.6, 2015, https://doi.org/10.12989/cac.2019.24.6.499
- Nonlocal vibration of DWCNTs based on Flügge shell model using wave propagation approach vol.34, pp.4, 2020, https://doi.org/10.12989/scs.2020.34.4.599
- Thermoelastic behaviour of FGM rotating cylinder resting on friction bed subjected to a thermal gradient and an external torque vol.19, pp.1, 2015, https://doi.org/10.1080/14484846.2018.1552736