DOI QR코드

DOI QR Code

Seismic response of pipes under the effect of fluid based on exact solution

  • Received : 2019.10.09
  • Accepted : 2022.04.13
  • Published : 2022.05.25

Abstract

One of the best choice for transportation of oil and gas at the end of rivers or seas is concrete pipelines. In this article, a concrete pipe at the end of river is assumed under the earthquake load. The Classic shell theory is applied for the modelling and the corresponding motion equations are derived by energy method. An external force induced by fluid around the pipe is asssumed in the final motion equations. For the solution of motion equations, the differential quadrature method (DQM) and Newmark method are applied for deriving the dynamic deflection of the pipe. The effects of various parameters including boundary conditions, fluid and length to thickness ratio are presented on the seismic response of the concrete pipe. The outcomes show that the clamped pipe has lower dynamic deflection with respect to simply pipe. In addition, with the effect of fluid, the dynamic defelction is increased significantly.

Keywords

References

  1. Al-Furjan, M. S. H., Hajmohammad, M. H., Shen, X., Rajak, D. K. and Kolahchi, R. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci. 144, 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036.
  2. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2020), "Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones", Aerosp Sci Technol. 107, 106259. https://doi.org/10.1016/j.ast.2020.106259.
  3. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021a), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin-Wall. Struct. 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.
  4. Al-Furjan, M.S.H., Hajmohammad, M.H., Shen, X., Rajak, D.K. and Kolahchi, R. (2021b), "Evaluation of tensile strength and elastic modulus of 7075-T6 aluminum alloy by adding SiC reinforcing particles using vortex casting method", J. Alloys. Compund., 886, 161261. https://doi.org/10.1016/j.jallcom.2021.161261.
  5. Al-Furjan, M.S.H., Xu, M.X., Farrokhian, A., Jafari, G.S., Shen, X. and Kolahchi, R. (2022a), "On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories", Wave Rand. Complex. Media, 2022, 1-25. https://doi.org/10.1080/17455030.2022.2030499.
  6. Benjamin, T.B. (1961), "Dynamics of a system of articulated pipes conveying fluid", Proc. Royal Soc. A., 261(1307), 457-486. https://doi.org/10.1098/rspa.1961.0090.
  7. Bidgoli, M.R. and Saeidifar, M. (2017), "Time-dependent buckling analysis of SiO2 nanoparticles reinforced concrete columns exposed to fire", Comput. Concrete, 20(2), 119-127. https://doi.org/10.12989/cac.2017.20.2.119.
  8. Bidgoli, M.R., Karimi, M.S. and GhorbanpourArani, A. (2016), "Nonlinear vibration and instability analysis of functionally graded CNT-reinforced cylindrical shells conveying viscous fluid resting on orthotropic Pasternak medium", Mech. Adv. Mater. Struct., 23(7), 819-831. https://doi.org/10.1080/15376494.2015.1029170.
  9. Brush, O. and Almorth, B. (1975), Buckling of Bars, Plates and Shells, McGraw Hill, NY, USA.
  10. Furjan, M.S.H., Yang, Y., Farrokhian, G.S., Shen, X., Kolahchi, R. and Rajak, D.K. (2022b), "Dynamic instability of nanocomposite piezoelectric-leptadenia pyrotechnica rheological elastomer-porous functionally graded materials micro viscoelastic beams at various strain gradient higher-order theories", Polym. Compos., 43(1), 282-298. https://doi.org/10.1002/pc.26373.
  11. Ghavanloo, E. and Fazelzadeh, A. (2011), "Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid", Physica E.,44(1), 17-24. https://doi.org/10.1016/j.physe.2011.06.024.
  12. Gong, S.W., Lam, K.Y. and Lu, C. (2000), "Structural analysis of a submarine pipeline subjected to underwater shock", Int. J. Pres. Ves. Pip., 77(7), 417-423. https://doi.org/10.1016/S0308-0161(00)00022-3.
  13. Inozemtcev, A.S., Korolev, E.V. and Smirnov, V.A. (2017), "Nanoscale modifier as an adhesive for hollow microspheres to increase the strength of high-strength lightweight concrete", Struct. Concrete, 18(1), 67-74. https://doi.org/10.1002/suco.201500048.
  14. JafarianArani, A. and Kolahchi, R. (2016), "Buckling Analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567.
  15. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A/Solid, 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010.
  16. Keshtegar, B., Motezaker, M., Kolahchi,R. and Trung, N.T. (2020a), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin-Wall. Struct. 154, 106820. https://doi.org/10.1016/j.tws.2020.106820.
  17. Khalili, A., Alavinasab, A. and Kennedy, M. (2019), "Localizing pipe wall features using acoustic wave propagation in water bar inside of pipe", J. Pipeline Syst. Eng. Pract., 10(4), 04019033. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000406.
  18. Kolahchi, R., Bidgoli, M.R.., Beygipoor, G.H. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech.,29(9), 3669-3677. https://doi.org/10.1007/s12206-015-0811-9
  19. Kolahchi, R., Keshtegar, B. and Trung, N.T. (2022), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", Int. J. Sandw. Struct., 24(1), 643-662. https://doi.org/10.1177/10996362211020388.
  20. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A.J.I.J.o.M.S. (2017), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  21. Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020). "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656. https://doi.org/10.1016/j.ast.2019.105656.
  22. Lee, U. and Oh, H. (2003), "The spectral element model for pipelines conveying internal steady flow", Eng. Struct., 25(8), 1045-1055. https://doi.org/10.1016/S0141-0296(03)00047-6.
  23. Liu, W. and Li, J. (2007a), "Application of perturbation method to stochastic seismic response analysis of buried pipeline with corrosion", J. Earthq. Eng. Eng. Vib., 27(2), 32-38. https://doi.org/10.3969/j.issn.1000-1301.2007.02.005
  24. Liu, W. and Li, J. (2007b), "Simulation analysis for probability density of buried pipeline area corrosion rate", Tongji Daxue Xuebao/Journal of Tongji University, 35(10), 1295-1298.
  25. Liu, W. and Li, J. (2007c), "Seismic response analysis of buried pipelines with stochastic corrosions", Tumu Gongcheng Xuebao/China Civil Eng. J., 40(2), 104-108.
  26. Liu, W. and Li, J. (2008a), "Seismic response evaluation of the impact of corrosion on buried pipelines based on the Markov process", Earthq. Eng. Eng. Vib., 7(3), 295-303. http://dx.doi.org/10.1007/s11803-008-0896-6.
  27. Liu, W. and Li, J. (2008b), "Stochastic seismic response of pipelines with corrosion", J. Earthq. Eng., 12(6), 914-931. http://dx.doi.org/10.1080/13632460801890190.
  28. Liu, W., Huang, L. and Li, J. (2011), "Experiment on leakage of water pipelines", J. Earthq. Eng. Eng. Vib., 31(4), 167-173
  29. Liu, W., Miao, H., Wang, C. and Li, J. (2017), "Experimental validation of a model for seismic simulation and interaction analysis of buried pipe networks", Soil Dyn. Earthq. Eng., 100, 113-130. https://doi.org/10.1016/j.soildyn.2017.05.024.
  30. Liu, W., Miao, H., Wang, C. and Li, J. (2018), "The stiffness of axial pipe-soil springs and axial joint springs tested by artificial earthquakes", Soil Dyn. Earthq. Eng., 106, 41-52. https://doi.org/10.1016/j.soildyn.2017.12.014.
  31. Liu, W., Song, Z. and Miao, H. (2018a), "Modified factor for segmented pipes in Chinese pipe seismic design code based on probability density evolution method", KSCE J. Civil Eng., 22(3), 951-961. https://doi.org/10.1007/s12205-018-1370-2.
  32. Liu, W., Sun, Q., Miao, H. Li, J. (2015), "Nonlinear stochastic seismic analysis of buried pipeline systems", Soil Dyn. Earth. Eng., 74, 69-78. https://doi.org/10.1016/j.soildyn.2015.03.017.
  33. Liu, X., Zhang, H., Gu X., Chen, Y., Xia, M. and Wu, K. (2017), "Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults", Eartquak. Struct., 12, 321-332. https://doi.org/10.12989/eas.2017.12.3.321.
  34. Liu, Z.G., Liu, Y. and Lu, J. (2012), "Fluid-structure interaction of single flexible cylinder in axial flow", Comput. Fluids, 56, 143-151. https://doi.org/10.1016/j.compfluid.2011.12.003.
  35. Mohammadian, H., Kolahchi, R. and Bidgoli, M.R. (2017), "Dynamic response of concrete beams reinforced by Fe2O3 nanoparticles subjected to magnetic field and earthquake load", Eartquak Struct., 13, 589-598. http://dx.doi.org/10.12989/eas.2017.13.6.589.
  36. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta. Metall. Mater., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.
  37. Motezaker, M. and Kolahchi, R. (2017), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.
  38. Motezaker, M., Kolahchi, R., Kumar Rajak, D. and Mahmoud, S. R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., 42(8), https://doi.org/10.1002/pc.26118.
  39. Nouri, A.Z. (2017), "Mathematical Modeling of concrete pipes reinforced with CNTs conveying fluid for vibration and stability analyses", Comput. Concrete, 19(3), 325-331. https://doi.org/10.12989/cac.2017.19.3.325.
  40. Safari Bilouei, B., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
  41. Sharifi, M., Kolahchi, R. and Bidgoli, M.R. (2018), "Dynamic analysis of concrete beams reinforced with Tio2 nano particles under earthquake load", Wind Struct., 26, 1-9. https://doi.org/10.12989/was.2018.26.1.001.
  42. Shokravi M. (2017), "Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects", Comput. Concrete, 19(3), 333-338. https://doi.org/10.12989/cac.2017.19.3.333.
  43. Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92(10), 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008.
  44. Su, Y., Li, J., Wu, C. and Li, Z.X. (2016), "Influences of nanoparticles on dynamic strength of ultra-high performance concrete", Compos. Part B-Eng., 91, 595-609. https://doi.org/10.1016/j.compositesb.2016.01.044.
  45. Wang, C., Liu, W. and Li, J. (2015), "Full-scale test of buried water supply pipeline network with explosion simulation earthquake", Tongji Daxue Xuebao/J. Tongji U., 43(10), 1487-1496. http://dx.doi.org/10.11908/j.issn.0253-374x.2015.10.006.
  46. Wong, L.S. and Nehdi, M.L. (2020), "Quantifying resistance of reinforced concrete pipe joints to water infiltration", J. Pipeline Syst. Eng. Pract., 11(3), 04020020. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000462.
  47. Yoon, H.I. and Son, I. (2007), "Dynamic response of rotating flexible cantilever fluid with tip mass", Int. J. Mech. Sci., 49, 878-887. https://doi.org/10.1016/j.ijmecsci.2006.11.006.