• Title/Summary/Keyword: class imbalance classification

Search Result 61, Processing Time 0.024 seconds

A Study on Visual Emotion Classification using Balanced Data Augmentation (균형 잡힌 데이터 증강 기반 영상 감정 분류에 관한 연구)

  • Jeong, Chi Yoon;Kim, Mooseop
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.880-889
    • /
    • 2021
  • In everyday life, recognizing people's emotions from their frames is essential and is a popular research domain in the area of computer vision. Visual emotion has a severe class imbalance in which most of the data are distributed in specific categories. The existing methods do not consider class imbalance and used accuracy as the performance metric, which is not suitable for evaluating the performance of the imbalanced dataset. Therefore, we proposed a method for recognizing visual emotion using balanced data augmentation to address the class imbalance. The proposed method generates a balanced dataset by adopting the random over-sampling and image transformation methods. Also, the proposed method uses the Focal loss as a loss function, which can mitigate the class imbalance by down weighting the well-classified samples. EfficientNet, which is the state-of-the-art method for image classification is used to recognize visual emotion. We compare the performance of the proposed method with that of conventional methods by using a public dataset. The experimental results show that the proposed method increases the F1 score by 40% compared with the method without data augmentation, mitigating class imbalance without loss of classification accuracy.

Comparison of Loss Function for Multi-Class Classification of Collision Events in Imbalanced Black-Box Video Data (불균형 블랙박스 동영상 데이터에서 충돌 상황의 다중 분류를 위한 손실 함수 비교)

  • Euisang Lee;Seokmin Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2024
  • Data imbalance is a common issue encountered in classification problems, stemming from a significant disparity in the number of samples between classes within the dataset. Such data imbalance typically leads to problems in classification models, including overfitting, underfitting, and misinterpretation of performance metrics. Methods to address this issue include resampling, augmentation, regularization techniques, and adjustment of loss functions. In this paper, we focus on loss function adjustment, particularly comparing the performance of various configurations of loss functions (Cross Entropy, Balanced Cross Entropy, two settings of Focal Loss: 𝛼 = 1 and 𝛼 = Balanced, Asymmetric Loss) on Multi-Class black-box video data with imbalance issues. The comparison is conducted using the I3D, and R3D_18 models.

Improving BMI Classification Accuracy with Oversampling and 3-D Gait Analysis on Imbalanced Class Data

  • Beom Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.9-23
    • /
    • 2024
  • In this study, we propose a method to improve the classification accuracy of body mass index (BMI) estimation techniques based on three-dimensional gait data. In previous studies on BMI estimation techniques, the classification accuracy was only about 60%. In this study, we identify the reasons for the low BMI classification accuracy. According to our analysis, the reason is the use of the undersampling technique to address the class imbalance problem in the gait dataset. We propose applying oversampling instead of undersampling to solve the class imbalance issue. We also demonstrate the usefulness of anthropometric and spatiotemporal features in gait data-based BMI estimation techniques. Previous studies evaluated the usefulness of anthropometric and spatiotemporal features in the presence of undersampling techniques and reported that their combined use leads to lower BMI estimation performance than when using either feature alone. However, our results show that using both features together and applying an oversampling technique achieves state-of-the-art performance with 92.92% accuracy in the BMI estimation problem.

Convolutional neural network-based data anomaly detection considering class imbalance with limited data

  • Du, Yao;Li, Ling-fang;Hou, Rong-rong;Wang, Xiao-you;Tian, Wei;Xia, Yong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • The raw data collected by structural health monitoring (SHM) systems may suffer multiple patterns of anomalies, which pose a significant barrier for an automatic and accurate structural condition assessment. Therefore, the detection and classification of these anomalies is an essential pre-processing step for SHM systems. However, the heterogeneous data patterns, scarce anomalous samples and severe class imbalance make data anomaly detection difficult. In this regard, this study proposes a convolutional neural network-based data anomaly detection method. The time and frequency domains data are transferred as images and used as the input of the neural network for training. ResNet18 is adopted as the feature extractor to avoid training with massive labelled data. In addition, the focal loss function is adopted to soften the class imbalance-induced classification bias. The effectiveness of the proposed method is validated using acceleration data collected in a long-span cable-stayed bridge. The proposed approach detects and classifies data anomalies with high accuracy.

유전자 알고리즘을 활용한 데이터 불균형 해소 기법의 조합적 활용

  • Jang, Yeong-Sik;Kim, Jong-U;Heo, Jun
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.309-320
    • /
    • 2007
  • The data imbalance problem which can be uncounted in data mining classification problems typically means that there are more or less instances in a class than those in other classes. It causes low prediction accuracy of the minority class because classifiers tend to assign instances to major classes and ignore the minor class to reduce overall misclassification rate. In order to solve the data imbalance problem, there has been proposed a number of techniques based on resampling with replacement, adjusting decision thresholds, and adjusting the cost of the different classes. In this paper, we study the feasibility of the combination usage of the techniques previously proposed to deal with the data imbalance problem, and suggest a combination method using genetic algorithm to find the optimal combination ratio of the techniques. To improve the prediction accuracy of a minority class, we determine the combination ratio based on the F-value of the minority class as the fitness function of genetic algorithm. To compare the performance with those of single techniques and the matrix-style combination of random percentage, we performed experiments using four public datasets which has been generally used to compare the performance of methods for the data imbalance problem. From the results of experiments, we can find the usefulness of the proposed method.

  • PDF

Class Imbalance Resolution Method and Classification Algorithm Suggesting Based on Dataset Type Segmentation (데이터셋 유형 분류를 통한 클래스 불균형 해소 방법 및 분류 알고리즘 추천)

  • Kim, Jeonghun;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.23-43
    • /
    • 2022
  • In order to apply AI (Artificial Intelligence) in various industries, interest in algorithm selection is increasing. Algorithm selection is largely determined by the experience of a data scientist. However, in the case of an inexperienced data scientist, an algorithm is selected through meta-learning based on dataset characteristics. However, since the selection process is a black box, it was not possible to know on what basis the existing algorithm recommendation was derived. Accordingly, this study uses k-means cluster analysis to classify types according to data set characteristics, and to explore suitable classification algorithms and methods for resolving class imbalance. As a result of this study, four types were derived, and an appropriate class imbalance resolution method and classification algorithm were recommended according to the data set type.

Network Intrusion Detection Using Transformer and BiGRU-DNN in Edge Computing

  • Huijuan Sun
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.458-476
    • /
    • 2024
  • To address the issue of class imbalance in network traffic data, which affects the network intrusion detection performance, a combined framework using transformers is proposed. First, Tomek Links, SMOTE, and WGAN are used to preprocess the data to solve the class-imbalance problem. Second, the transformer is used to encode traffic data to extract the correlation between network traffic. Finally, a hybrid deep learning network model combining a bidirectional gated current unit and deep neural network is proposed, which is used to extract long-dependence features. A DNN is used to extract deep level features, and softmax is used to complete classification. Experiments were conducted on the NSLKDD, UNSWNB15, and CICIDS2017 datasets, and the detection accuracy rates of the proposed model were 99.72%, 84.86%, and 99.89% on three datasets, respectively. Compared with other relatively new deep-learning network models, it effectively improved the intrusion detection performance, thereby improving the communication security of network data.

Ensemble Learning for Solving Data Imbalance in Bankruptcy Prediction (기업부실 예측 데이터의 불균형 문제 해결을 위한 앙상블 학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.1-15
    • /
    • 2009
  • In a classification problem, data imbalance occurs when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. This paper proposes a Geometric Mean-based Boosting (GM-Boost) to resolve the problem of data imbalance. Since GM-Boost introduces the notion of geometric mean, it can perform learning process considering both majority and minority sides, and reinforce the learning on misclassified data. An empirical study with bankruptcy prediction on Korea companies shows that GM-Boost has the higher classification accuracy than previous methods including Under-sampling, Over-Sampling, and AdaBoost, used in imbalanced data and robust learning performance regardless of the degree of data imbalance.

  • PDF

Utilizing Minimal Label Data for Tomato Leaf Disease Classification: An Approach through Recursive Learning Based on YOLOv8 (토마토 잎 병해 분류를 위한 최소 라벨 데이터 활용: YOLOv8 기반 재귀적 학습 방식을 통한 접근)

  • Junhyuk Lee;Namhyoung Kim
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.61-73
    • /
    • 2024
  • Class imbalance is one of the significant challenges in deep learning tasks, particularly pronounced in areas with limited data. This study proposes a new approach that utilizes minimal labeled data for effectively classifying tomato leaf diseases. We introduced a recursive learning method using the YOLOv8 model. By utilizing the detection predictions of images on the training data as additional training data, the number of labeled data is progressively increased. Unlike conventional data augmentation and up-down sampling techniques, this method seeks to fundamentally solve the class imbalance problem by maximizing the utility of actual data. Based on the secured labeled data, tomato leaves were extracted, and diseases were classified using the EfficientNet model. This process achieved a high accuracy of 98.92%. Notably, a 12.9% improvement compared to the baseline was observed in the detection of Late blight diseases, which has the least amount of data. This research presents a methodology that addresses data imbalance issues while offering high-precision disease classification, with the expectation of application to other crops.

A Transfer Learning Method for Solving Imbalance Data of Abusive Sentence Classification (욕설문장 분류의 불균형 데이터 해결을 위한 전이학습 방법)

  • Seo, Suin;Cho, Sung-Bae
    • Journal of KIISE
    • /
    • v.44 no.12
    • /
    • pp.1275-1281
    • /
    • 2017
  • The supervised learning approach is suitable for classification of insulting sentences, but pre-decided training sentences are necessary. Since a Character-level Convolution Neural Network is robust for each character, so is appropriate for classifying abusive sentences, however, has a drawback that demanding a lot of training sentences. In this paper, we propose transfer learning method that reusing the trained filters in the real classification process after the filters get the characteristics of offensive words by generated abusive/normal pair of sentences. We got higher performances of the classifier by decreasing the effects of data shortage and class imbalance. We executed experiments and evaluations for three datasets and got higher F1-score of character-level CNN classifier when applying transfer learning in all datasets.