Acknowledgement
이 논문은 2023년도 가천대학교 교내연구비 지원에 의한 결과임.(GCU-202303450001)
References
- G. Idoje, T. Dagiuklas, and M. Iqbal, "Survey for smart farming technologies: Challenges and issues," Computers & Electrical Engineering, 2021.
- Y. Guo et al., "Plant Disease Identification Based on Deep Learning Algorithm in Smart Farming," Discrete Dynamics in Nature and Society, 2020.
- David. P. Hughes and M. Salathe, "An open access repository of images on plant health to enable the development of mobile disease diagnostics," arXiv, 2015.
- 한국정보화진흥원, "지능정보산업 인프라 조성사업 연차보고서," https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201800039420&dbt=TRKO#, 2017.
- 한국지능정보사회진흥원, "농업 지식베이스," AI Hub, https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=150, 2019.
- 채종욱, 신영학, "딥러닝 기반 토마토 잎 병충해 분류 및 시각화를 위한 연구," 한국지능시스템학회 논문지, 32(2), pp.145-150, 2022. https://doi.org/10.5391/JKIIS.2022.32.2.145
- 나명환, 조완현, 김상균, "딥러닝 알고리즘을 이용한 토마토에서 발생하는 여러가지 병해충의 탐지와 식별에 대한 웹응용 플렛폼의 구축," 품질경영학회지, 48(4), pp.581-596, 2020. https://doi.org/10.7469/JKSQM.2020.48.4.581
- 함현식, 김동현, 채정우, 이신애, 김윤지, 조현욱, 조현종, "딥러닝 기반 토마토 병충해 분류시스템 연구," 전기학회논문지, 69(2), pp.349-355, 2020. https://doi.org/10.5370/KIEE.2020.69.2.349
- 한국지능정보사회진흥원, "노지 작물 질병 진단 이미지," AI Hub, https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&top-Menu=100&aihubDataSe=data&dataSetSn=147.5, 2021.
- 한국지능정보사회진흥원, "시설 작물 질병 진단 이미지," AI Hub, https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&top-Menu=100&aihubDataSe=data&dataSetSn=153, 2021.
- 한국지능정보사회진흥원, "식물 병 유발 통합데이터," AI Hub, https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&top-Menu=100&aihubDataSe=data&dataSetSn=525, 2022.
- R. King, "Visualization of YOLOv8 Architecture," [Online]. Available: https://github.com/ultralytics/ultralytics/issues/189. [Accessed: May. 08, 2024].
- I. Ahmed and P. K. Yadav, "A systematic analysis of machine learning and deep learning based approaches for identifying and diagnosing plant diseases," Sustainable Operations and Computers, vol. 4, pp.96-104, 2023. https://doi.org/10.1016/j.susoc.2023.03.001
- H. Ulutas and V. Aslantas, "Design of Efficient Methods for the Detection of Tomato Leaf Disease Utilizing Proposed Ensemble CNN Model," Electronics, vol. 12, no. 4, pp.827, 2023.
- Y. He, G. Zhang, and Q. Gao, "A novel ensemble learning method for crop leaf disease recognition," Frontiers in Plant Science, vol. 14, 2023.
- J. H. Lim and O. Attallah, "Tomato Leaf Disease Classification via Compact Convolutional Neural Networks with Transfer Learning and Feature Selection," Horticulturae, vol. 9, no. 2, pp.149, 2023.
- S. Ahmed, M. B. Hasan, T. Ahmed, M. R. K. Sony, and M. H. Kabir, "Less is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification," IEEE Access, vol. 10, pp.68868-68884, 2022. https://doi.org/10.1109/ACCESS.2022.3187203
- N. Ullah et al., "An effective approach for plant leaf diseases classification based on a novel DeepPlantNet deep learning model," Frontiers in Plant Science, vol. 14, 2023.
- A. Gangwar, G. Rani, V. P. S. Dhaka, and Sonam, "Detecting Tomato Crop Diseases with AI: Leaf Segmentation and Analysis," 7th International Conference on Trends in Electronics and Informatics, pp.902-907, 2023.
- A. Abbas, S. Jain, M. Gour, and S. Vankudothu, "Tomato plant disease detection using transfer learning with C-GAN synthetic images," Computers and Electronics in Agriculture, vol. 187, 2021.
- Ultralytics, "YOLOv8 documentation," [Online]. Available: https://docs.ultralytics.com/. [Accessed: Mar. 14, 2024].
- M. Tan and Q. v. Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks," International Conference on Machine Learning, 2019.
- M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, "MobileNetV2: Inverted Residuals and Linear Bottlenecks," IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.4510-4520, 2018.
- T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, "Focal Loss for Dense Object Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp.318-327, 2020. https://doi.org/10.1109/TPAMI.2018.2858826