In this paper, we study the effects of a deformation mapping on the resulting deformation d/BCK-algebra obtained via such a deformation mapping. Besides providing a method of constructing d-algebras from BCK-algebras, it also highlights the special properties of the standard BCK-algebras of posets as opposed to the properties of the class of divisible d/BCK-algebras which appear to be of interest and which form a new class of d/BCK-algebras insofar as its not having been identified before.
We give a complete classification of simply connected and solvable real Lie groups whose nontrivial coadjoint orbits are of codimension 1. This classification of the Lie groups is one to one corresponding to the classification of their Lie algebras. Such a Lie group belongs to a class, called the class of MD-groups. The Lie algebra of an MD-group is called an MD-algebra. Some interest properties of MD-algebras will be investigated as well.
Let G be a finite group with k distinct conjugacy classes $C_1, C_2, \cdots, C_k$ and F an algebraically closed field such that char$(F){\dag}\left$\mid$ G \right$\mid$$. We denoted by $Irr_F$(G) the set of all irreducible F-characters of G and $Cf_F$(G) the set of all class functions of G into F. Then $Cf_F$(G) is a commutative F-algebra with an F-basis $Irr_F(G) = {\chi_1, \chi_2, \cdots, \chi_k}$.
This paper is concerned with applications of representations of the Lie group of class $D_4$ to PDE. A realization of all irreducible finite-dimensional representations of $D_4$ is found and their application to a study of solutions of some systems of partial differential equations is given.
지난 20여 년간 선형대수학 교수학습과정에서 공학적 도구의 필요성이 지속적으로 제기되어 왔으며 실제 선형대수학 교재를 통하여 관련된 다양한 도구가 소개되었다. 그러나 한국 대학의 선형대수학 교육에서는 다양한 현실적인 이유로 도구 활용이 미진하였다. 따라서 오랜 기간 선형대수학의 이론 교육에만 치중한 경향이 있다. 본 논문에서는 한국의 대학수학교육 부분 중 공학적 도구 도입에서 제기되는 문제점과 어려움을 모두 해결할 수 있는 대안을 구체적으로 제시한다. 그리고 실제 대학수학교육에서 공학적 도구의 활용이 이루어진 모델의 하나로 Sage를 이용하여 개발한 선형대수학 웹 콘텐츠와 행렬계산기를 소개한다. 이를 활용하면 교육현장에서 선형대수학의 대부분의 개념을 언제, 어디서나 사용가능한 무료 도구와 함께 직관적으로 이해하고, 시각화 및 대용량 계산을 수시로 편리하게 수행하며 학습할 수 있다. 더구나 다루는 행렬의 크기를 자연스럽게 변형 및 확대할 수 있다. (http://sage.skku.edu/static/mc.html)
Internet has been widely spread out and the need of convenient mathematical expression in the internet has been in need. In this paper, we discvss how MathML and JAVA have been developed for mathematical expressions in the internet. And we introduce our JAVA applet tools that adapted the object oriented programming techniques of the MathML and JAVA. Most of our JAVA toots have been developed for linear algebra course whose method can be applied to other subject as well. Then we discuss how we use those tools and output from the use of them in our class.
In this paper, a new class of diagram algebras which are subalgebras of signed brauer algebras, called the Walled Signed Brauer algebras denoted by ${\overrightarrow{D}}_{r,s}(x)$, where $r,s{\in}{\mathbb{N}}$ and x is an indeterminate are introduced. A presentation of walled signed Brauer algebras in terms of generators and relations is given. The cellularity of a walled signed Brauer algebra is established. Finally, ${\overrightarrow{D}}_{r,s}(x)$, is quasi- hereditary if either the characteristic of a field, say p, p = 0 or p > max(r, s) and either $x {\neq}0$ or x = 0 and $r{\neq}s$.
In this paper, we have first presented the construction of the linear characters of a finite Coxeter group $G_n$ of type $B_n$ by lifting all linear characters of the quotient group $G_n/[G_n,G_n]$ of the commutator subgroup $[G_n,G_n]$. Also we show that the sets of distinguished coset representatives $D_A$ and $D_{A^{\prime}}$ for any two signed compositions A, A' of n which are $G_n$-conjugate to each other and for each conjugate class ${\mathcal{C}}_{\lambda}$ of $G_n$, where ${\lambda}{\in}\mathcal{BP}(n)$, the equality ${\mid}{\mathcal{C}}_{\lambda}{\cap}D_A{\mid}={\mid}{\mathcal{C}}_{\lambda}{\cap}D_{A^{\prime}}{\mid}$ holds. Finally, we have given the general structure of units of Mantaci-Reutenauer algebra.
By a near ${\lambda}$-lattice is meant an upper ${\lambda}$-semilattice where is defined a parti binary operation $x{\Lambda}y$ with respect to the induced order whenever $x$, $y$ has a common lower bound. Alternatively, a near ${\lambda}$-lattice can be described as an algebra with one ternary operation satisfying nine simple conditions. Hence, the class of near ${\lambda}$-lattices is a quasivariety. A ${\lambda}$-semilattice $\mathcal{A}=(A;{\vee})$ is said to have sectional (antitone) involutions if for each $a{\in}A$ there exists an (antitone) involution on [$a$, 1], where 1 is the greatest element of $\mathcal{A}$. If this antitone involution is a complementation, $\mathcal{A}$ is called an ortho ${\lambda}$-semilattice. We characterize these near ${\lambda}$-lattices by certain identities.
We are introducing a new learning environment for linear algebra at Sungkyunkwan University, and this is changing our teaching methods. Korea's e-Campus Vision 2007 is a program begun in 2003, to equip lecture rooms with projection equipment, View cam, tablet PC and internet D-base. Now our linear algebra classes at Sungkyunkwan University can be taught in a modem learning environment. Lectures can easily being recorded and students can review them right after class. At Sungkyunkwan University almost $100\%$ of all large and medium size lecture rooms have been remodeled by Mar. 2005 and are in use. We introduce this system in detail and how this learning environment changed our teaching method. Analysis of the positive effect will be added.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.