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Abstract. In this paper, a new class of diagram algebras which are subalgebras of

signed brauer algebras, called the Walled Signed Brauer algebras denoted by
−→
Dr,s(x),

where r, s ∈ N and x is an indeterminate are introduced. A presentation of walled signed

Brauer algebras in terms of generators and relations is given. The cellularity of a walled

signed Brauer algebra is established. Finally,
−→
Dr,s(x), is quasi- hereditary if either the

characteristic of a field, say p, p = 0 or p > max(r, s) and either x ̸= 0 or x = 0 and r ̸= s.

1. Introduction

The walled Brauer algebras Br,s(δ) [4, section 2] are defined as subalgebras of
Brauer algebras Br+s(δ). It was introduced independently by Turaev [16], Koike
[10] and Benkart et al.[1] which was partially motivated by Schur- Weyl duality
between walled Brauer algebras Br,s(δ) and general linear group GLδ(C) arising
from mutually commuting actions on the mixed tensor space V ⊗r ⊗W⊗s, where
V is the natural representation of GLδ(C) and W := V ∗, the dual of the natural
representation of GLδ(C). Cox et al. [4] and Brundan and Stroppel [3] have also
studied walled Brauer algebras.

Brauer and walled Brauer algebras arose in invariant theory. Brauer algebras [2]
have a basis consisting of undirected graphs. This motivated Parvathi and Kamaraj
[14] to define a new class of diagram algebras which are known as signed Brauer

algebras denoted by D⃗f (x), having a basis consisting of signed diagrams. These

algebras contain Brauer algebras Df (x) and the group algebras k(x)S⃗f , where S⃗f

is isomorphic to the hyperoctahedral group (Z2 ≀ Sf ), as subalgebras in a natural
fashion where as the Brauer algebras contain the group algebra of symmetric group.
The flip map gives an isomorphism between the group algebra of symmetric group
Sr+s and the walled Brauer algebra Br,s(δ). The structure of signed Brauer algebras
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over k(x), where x is an indeterminate, has been studied in [14].

These works motivated us to define a new class of diagram algebras over k(x)
which are subalgebras of signed Brauer algebras. These new algebras are called

Walled signed Brauer algebras and denoted by
−→
Dr,s(x), where r, s ∈ N and x is an

indeterminate.

In section 3, we define the walled signed Brauer algebras and give a presentation
of walled signed Brauer algebras in terms of generators and relations . In section

4, the cellularity of these algebras are established and we proved that
−→
Dr,s(x), are

quasi-hereditary if either characteristic of a field, say p, p = 0 or p > max(r, s) and
either x ̸= 0 or x = 0 and r ̸= s.

2. Preliminaries

In this section, we collect some preliminary results that we need for the devel-
opment of the paper.

Definition 2.1.([15]) A partition of a non-negative integer k is a sequence of non-
negative integers λ = (λ1, λ2 . . . , λr) such that λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0 and
|λ| = λ1 + λ2 + . . . + λr = k. The non-zero λ′is are called the parts of λ and the
number of non-zero parts is called the length of λ. The notation λ ⊢ k denotes that
λ is a partition of k.

Definition 2.2.([9]) A partition λ = (λ1, λ2 . . . , λr) of k is said to be p-regular if
either p > 0 and there is no 1 ≤ i ≤ r such that λi = λi+1 = . . . = λi+p or p = 0.

Definition 2.3.([7]) A bi-partition of a non-negative integer n is an ordered pair
λ = (λ(1), λ(2)) of partitions λ(1) and λ(2) such that λ(1) + λ(2) = n. For every
bipartition λ = (λ(1), λ(2)), we associate a Young subgroup Sλ = Sλ(1) × Sλ(2)

Definition 2.4.([9]) A bi-partition λ = (λ(1), λ(2)) of n is said to be p-regular if
the partitions λ(1) and λ(2) are p-regular.

Definition 2.5.([7]) Suppose that a = (a1, a2) is an 2− tuple of integers a1 and a2
such that 0 ≤ a1, a2 ≤ n.
Let U+

a = Ua,1Ua,2; where Ua,k =
ak∏

m=1
(Lm −Qk) for 1 ≤ k ≤ 2

Here Q1 = 1, Q2 = −1 and Lm = sm−1 . . . s1s0s1 . . . sm−1.

Definition 2.6.([7]) Suppose that λ = (λ(1), λ(2)) is a bi-partition of n and define

a = (a1, a2) by ak =
k−1∑
i=1

| λ(i) |. Let xλ =
∑

w∈Sλ

Tw and set mλ = U+
a xλ.

Definition 2.7.([7]) Suppose that λ is a bi-partition of n and that s and t are row
standard λ-tableaux . Let mst = T ∗

d(s)mλTd(t).

Definition 2.8.([7]) Suppose that λ is a bi-partition of n.
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1. Let Nλ be the R- module spanned by
{mst/s and t are standard µ− tableaux for some bi-partition µ of n with
µ� λ}.

2. Let Nλ be the R- module spanned by
{mst/s and t are standard µ− tableaux for some bi-partition µ of n with
µ� λ}.

Proposition 2.9.([7]) Suppose that λ is a bi-partition of n. Then Nλ and Nλ are
two-sided ideals of an algebra H, where H is the Iwahori-Hecke algebra of type B
and H ∼= k(Z2 ≀ Σn).

Theorem 2.10. [7] The algebra H is a free R-module with basis
M= {mst/s and t are standard λ-tableaux for some bi-partition of n}.

Moreover, M is a cellular basis of H.

Definition 2.11.([7]) Suppose that λ is a bi-partition of n. Let zλ = (Nλ+mλ)/Nλ.

The Specht module Sλ of k(Z2≀Σn) is the submodule ofH/Nλ given by Sλ = zλH.
Also Sλ is a free R− module with basis {zλTd(t)| t is a standard λ-tableaux }.

Definition 2.12.([8]) Let A be an associative algebra over the field K. The associa-
tive algebra A is called a cellular algebra with cell datum (Λ,M,C, i) if following
conditions are satisfied:

1. The finite set Λ is partially ordered. Associated with each λ ∈ Λ there is
a finite set M(λ). The algebra A has an K− basis Cλ

S,T where (S, T ) runs
through all elements of M(λ)×M(λ) for all λ ∈ Λ.

2. The map i is an K− linear anti-automorphism of A with i2 = id which sends
Cλ

S,T to Cλ
T,S .

3. For each λ ∈ Λ and S, T ∈ M(λ) and each a ∈ A, the product aCλ
S,T can

be written as
( ∑
U∈M(λ)

ra(U, S)C
λ
U,T

)
+ r′, where r′ is a linear combination

of basis elements with upper index µ strictly smaller than λ, and where the
coefficients ra(U, S) ∈ K do not depend on T.

Definition 2.13.([11]) Let A be an algebra over a Noetherian commutative integral
domain R. Assume there is an involution i on A. A two sided ideal J in A is called
a cell ideal if and only if i(J) = J and there exists a left ideal ∆ ⊂ J such that ∆
is finitely generated and free over R and there is an isomorphism of A-bimodules
α : J ≃ ∆ ⊗R i(∆) (where i(∆) ⊂ J is the i-image of ∆) making the following
diagram commutative.
The algebra A (with the involution i) is called cellular if and only if there is an
R-module decomposition A = J ′

1 ⊕ J ′
2 ⊕ . . . ⊕ J ′

n (for some n) with i(J ′
j) = J ′

j

for some j and such that setting Jj = ⊕j
i=1J

′
i gives a chain of two-sided ideals

of A: 0 = J0 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jn = A (each of them fixed by i) and for
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each j(j = 1, ......, n) the quotient J ′
j = Jj/Jj−1 is a cell ideal( with respect to the

involution induced by i on the quotient) of A/Jj−1.

Definition 2.14.(Inflating algebras along free modules)([12]) Given a k -algebra B
, a k-vector space V , and a bilinear form
ϕ : V ⊗V −→ B with values in B, we define a associative algebra (possibly with out
unit) A(B, V, ϕ) as follows: As a k- vector space, A = V ⊗V ⊗B. The multiplication
is defined on basis elements as follows:

(a⊗ b⊗ x)(c⊗ d⊗ y) = a⊗ d⊗ x ϕ(b, c) y.
Assume that i is an involution on B with i(ϕ(v, w)) = ϕ(w, v) then we can define
involution j on A by putting

j(a⊗ b⊗ x) = b⊗ a⊗ i(x).
This definition makes A into an k-algebra (possibly with out unit), and j is an
involutory anti-automorphism of A. The algebra A(B, V, ϕ) is an inflation of B
along V.

Proposition 2.15.([12]) There exist an element b in B such that b+1(C) is a unit
element in A if and only if b satisfies the following two equations.

1. For all c in C there is an equality δ(1, c) + β(b, c) = 0 = δ(c, 1) + γ(c, b).

2. For all d in B there are equalities (b− 1)d = γ(1, d) and d(b− 1) = β(d, 1)

Definition 2.16. Inflating an algebra along another one([12]) Suppose we are given
an algebra B(may be without unit) and an algebra C (with unit). We define an
algebra structure on A := B⊕C which extends the given structures and which makes
B into a two-sided ideal such that A/B becomes isomorphic to C. Multiplication is
defined by fixing the eight summands of a multiplication map (B⊕C)⊗(B⊕C) −→
(B ⊕ C). In order to make B into an ideal we put the summands B ⊗ B −→
C, C ⊗ B −→ C and B ⊗ C −→ C all to zero. The summands C ⊗ C −→ C and
B ⊗ B −→ B are defined to be the given multiplication on C and B, respectively.
Thus we have to choose three bilinear maps δ : C ⊗ C −→ B, β : B ⊗ C −→ B
and γ : C ⊗ B −→ B. Then multiplication in A is defined by (b1 + c1)(b2 + c2) =
b1b2 + β(b1, c2) + γ(c1, b2) + δ(c1, c2) + c1c2.
This multiplication is associative if and only if the following conditions are satisfied:

1. The map β is a homomorphism of left B-module.

2. The map γ is a homomorphism of right B-module.

3. For all b in B and c1, c2 in C there is an equality β(β(b, c1), c2) = bδ(c1, c2)+
β(b, c1c2).

4. For all b in B and c1, c2 in C there is an equality γ(c1, γ(c2, b)) = γ(c1c2, b)+
δ(c1, c2)b.

5. for all c1, c2, c3 in C there is an equality δ(c1c2, c3) + β(δ(c1, c2), c3) =
δ(c1, c2c3) + γ(c1, δ(c2, c3)).
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6. For all b1, b2 in B and c in C there is an equality β(b1, c)b2 = b1γ(c, b2).

7. For all c1, c2 in C and b in B there is an equality β(γ(c1, b), c2) =
γ(c1, β(b, c2)).

We call A an inflation of C along B. Moreover, an inductive application of
this procedure to algebras C,B1, B2, . . . , Bn ensures that inflation pieces, Bi =
Vi ⊗ Vi ⊗B′

i, we define an iterated inflation A of C,B′
1, B

′
2, . . . , B

′
n

Proposition 2.17.([12]) An inflation of a cellular algebra is cellular again. In
particular, an iterated inflation of n copies of R is cellular, with a cell chain of
length n.

Theorem 2.18.([12]) Any cellular algebra over R is the iterated inflation of finitely
many copies of R. Conversely, any iterated inflation of finitely many copies of R is
cellular.

Definition 2.19.([13]) Let A be a k-algebra. An ideal J in A is called a heredity
ideal if J is idempotent, J(rad(A))J = 0 and J is a projective left(or, right) A-
module. The algebra A is called quasi-hereditary provided there is a finite chain
0 = J0 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jn = A of ideals of A such that Jj/Jj−1is a heredity
ideal in A/Jj−1 for all j. Such a chain is then called a heredity chain of the quasi-
hereditary algebra A.

3. Walled Signed Brauer Algebra

In this section, we define the Walled Signed Brauer Algebras and give a presen-
tation of walled signed Brauer algebras in terms of generators and relations.

Fix an algebraically closed field k of characteristic p > 0 and x an indeterminate.

For r, s ∈ N, the walled signed Brauer algebra
−→
Dr,s(x) can be defined as a subalgebra

of the signed Brauer algebra
−→
Dr+s(x) in the following manner.

Recall that for n ∈ N, the signed Brauer algebra
−→
Dn(x) [14] is defined over the

field k(x), where k is any arbitrary field and x an indeterminate.
A graph is said to be a signed diagram if every edge is labeled by a plus sign

or a minus sign and edges of a signed diagram are called signed edges. An edge
labeled by a plus (resp., minus) sign will be called a positive (resp., negative) edge.
A positive vertical (resp., horizontal) edge will be denoted by ↓ (resp., →) and a
negative vertical (resp., horizontal) edge will be denoted by ↑ (resp., ←).

Let
−→
V n be the set of all signed diagram b⃗ with n signed edges and 2n vertices,

arranged in two rows of n vertices each. In these signed diagrams, each signed edge
belongs to exactly two vertices, and each vertex belongs to exactly one signed edge.

The signed Brauer algebra
−→
Dn is a vector space spanned by

−→
V n over k(x).

The multiplication in
−→
Dn is defined as follows: First, take the product of two

undirected graphs a, b; where a⃗, b⃗ are signed diagrams as in [14]; that is, draw b⃗

below a⃗, and connect ith upper vertex of b⃗ with the ith lower vertex of a⃗. Then
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a.b = xdc, where d is the number of loops in a.b, and c is the undirected graph.
A new edge obtained in the product a⃗.⃗b is labeled by a plus sign or a minus sign
according as the number of negative edges obtained from a⃗ and b⃗ to form this edge
is even or odd.

A loop β in a⃗.⃗b is said to be positive ( resp., negative) if the number of negative

edges obtained from a⃗ and b⃗ to form this loop is even(resp., odd). A positive (resp.,

negative) loop β in a⃗.⃗b is replaced by the variable x2 (resp., x) in a⃗.⃗b.

Now, c⃗ is the signed diagram where each edge is labeled as above and a⃗.⃗b = xdc⃗,
d is the number of loops in c⃗. Then a⃗ · b⃗ = x(2d1+d2)c⃗, where d1(resp., d2) is the

number of positive (resp., negative) loops in a⃗ · b⃗.
It is usual to represent basis elements graphically by means of diagrams with n

upper vertices numbered 1 to n from left to right; and n lower vertices numbered
1̄ to n̄ from left to right, where each vertex is connected to precisely one other
by a signed edge. Edges connecting a upper vertex and a lower vertex are called
propagating lines, and the reminder are called upper or lower horizontal arcs.

Partition the basis diagrams with the wall separating the first r upper vertices
and the first r lower vertices from the reminder then the Walled Signed Brauer

Algebra
−→
Dr,s(x) is the subalgebra of

−→
Dr+s(x) with basis those signed diagrams

such that no propagating edge crosses the wall and every upper or lower horizontal
arc does cross the wall. We call those diagrams as walled signed Brauer diagrams.

Remark 3.1 If we allow vertical edges can cross the wall and allow horizontal edges
may not cross the wall (that is, a vertex can be connected to any other vertex), then

we obtain r + s signed diagram. The signed Brauer algebra
−→
Dr+s(x) is spanned

by all r + s signed diagrams with product defined as above. Thus walled signed

Brauer diagram is a signed diagram and walled signed Brauer algebra
−→
Dr,s(x) is a

subalgebra of the signed Brauer algebra
−→
Dr+s(x).

For example,

1̄ 2̄ 3̄ 4̄ 5̄

1 2 3 4 5

~a =

wall

1̄ 2̄ 3̄ 4̄ 5̄

1 2 3 4 5

~b =

wall

a⃗ and b⃗ are basis elements in
−→
D2,3(x) and the multiplication of a⃗ and b⃗ are given

by
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~a.~b = =

~b.~a = = x2

It is useful to compare
−→
Dr,s(x) with the group algebra k(Z2 ≀ Sr+s) of the

hyperoctahedral group (Z2 ≀ Sr+s) ; where Sr+s is a symmetric group of (r + s)
symbols and Z2 is a group consisting of two elements. The group algebra k(Z2 ≀Sr+s)
can be viewed diagrammatically with its signed diagram with no horizontal edge.
We define a map

fr,s : k(Z2 ≀ Sr+s) −→
−→
Dr,s(x) by

mapping a signed diagram with no horizontal edge to the walled signed Brauer
diagram obtained by adding a wall between the rth and (r + 1)th vertices, then
flipping the part of the diagram that is to the right of the wall in its horizontal axis
without disconnecting any edges and without changing the sign also.

The map fr,s is a vector space isomorphism.

dim(
−→
Dr,s(x))= dim(K(Z2 ≀ Sr+s))= 2r+s(r + s)!

3.1. Generators, relations of the walled signed Brauer algebra

The algebra Gn := K(Z2 ≀ Sr+s) is generated by t = h⃗1 and the transpositions
si := (i, i+ 1) for i = 1, 2, ...., (r + s− 1) subject to the relations (usual hyperocta-
hedral relations).

1. t2 = 1

2. s2i = 1 ; 1 ≤ i ≤ r + s− 1

3. ts1ts1 = s1ts1t

4. sisj = sjsi; |i− j| ≥ 2

5. sisi+1si = si+1sisi+1; 1 ≤ i ≤ r + s− 1

6. sit = tsi; 2 ≤ i ≤ r + s− 1
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Let g0 = fr,s(t) = fr,s(h1) = h1 = t and for i = 1, 2, ....., (r−1), (r+1), ....., (r+
s− 1), gi = fr,s(si) = si.
So for i ̸= r the diagram of gi is the same as si (with the addition of the wall).
while gr = er is the diagram,

1̄ 2̄ (r − 1) r (r + 1) (r + 2) (r + s)

1 2 r − 1 r r + 1 r + 2 r + s

er =

Theorem 3.2. The walled signed Brauer algebra
−→
Dr,s(x) is generated by the el-

ements h⃗1, h⃗r+1, g1, g2, ......, gr−1, er, gr+1, ......., gr+s−1 and satisfying the
following relations:

1. g2i = 1; i = 1, 2, ....., (r − 1), (r + 1), ......, (r + s− 1).

2. gigj = gjgi if | i− j |> 1

3. gi+1gigi+1 = gigi+1gi

4. ergi = gier 1 ≤ i ≤ r − 2 or r + 2 ≤ i ≤ r + s− 1

5. e2r = x2er

6. ergr−1er = er

7. ergr+1er = er

8. gr−1gr+1ergr−1gr+1er = ergr−1gr+1er

9. ergr−1gr+1ergr−1gr+1 = ergr−1gr+1er

10. h⃗2i = 1; i = 1, 2, ......, (r + s).

11. h⃗1gi = gih⃗1; i ̸= 1

12. h⃗1g1h⃗1g1 = g1h⃗1g1h⃗1

13. h⃗r+1gi = gih⃗r+1; i ̸= r, (r + 1)

14. h⃗r+1gr+1h⃗r+1gr+1 = gr+1h⃗r+1gr+1h⃗r+1

15. erh⃗rer = xer and erh⃗r+1er = xer

16. gih⃗i+1 = h⃗igi; i ̸= r

17. erh⃗r+1 = erh⃗r

18. h⃗r+1er = h⃗rer
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19. erh⃗i = h⃗ier; i ̸= r, (r + 1)

20. erh⃗rgr+1er = erh⃗r+2 and erh⃗r+1gr+1er = erh⃗r+2

where,

1 2 i i+ 1 r r + 1 r + s

~hi
=

For 1 ≤ i ≤ r − 1

1 2 i i+ 1 r r + 1 r + s

gi =

For r + 1 ≤ i ≤ r + s− 1

1 2 r r + 1 i i+ 1 r + s

gi =

Proof. The walled Brauer algebra Dr,s(x
2) is generated by g1, g2, . . . , gr−1, er,

gr+1, . . . , gr+s−1, with the relation from (1) to (9), there exists a unique algebra
homomorphism,

Φ′ : Dr,s(x
2) −→ A, such that Φ′(g1), . . . ,Φ

′(gr−1), Φ′(er),Φ
′(gr+1), . . . ,

Φ′(gr+s−1) satisfy the relation from (1) to (9), where A is the free associated alge-
bra over k and is generated by x1, xr+1, y1, y2, . . . , yr−1, zr, yr+1, ......., yr+s−1

satisfying the relations from (1) to (20), where Φ′(gi) = yi, i = 1, 2, . . . , r − 1, r +
1, . . . , r + s− 1 and Φ′(er) = zr.

Similarly the generators h⃗1, h⃗r+1, g1, g2, . . . , gr−1, gr+1, . . . , gr+s−1 satisfy the
hyperoctahedral relations of the hyperoctahedral groups Z2 ≀Σr and Z2 ≀Σs, there
exists a unique algebra homomorphism,

Φ′′ : k(Z2≀Σr×Z2≀Σs) −→ A, such that Φ′′(⃗h1),Φ
′′(⃗hr+1), Φ

′′(g1), . . . ,Φ
′′(gr−1),

Φ′′(gr+1), . . . , Φ
′′(gr+s−1) satisfy the hyperoctahedral relations and

Φ′ |k(Σr×Σs)= Φ′′ |k(Σr×Σs) and Φ′′(⃗h1) = x1,Φ
′′(⃗hr+1) = xr+1, and Φ′′(gi) = yi

First we prove the following for a signed walled Brauer diagram d ∈ Dr,s(x
2)
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(a) Φ′(d).Φ′′(⃗hi).Φ
′′(⃗hj) = Φ′(d) whenever dh⃗ih⃗j = d, 1 ≤ i ≤ r and

r + 1 ≤ j ≤ r + s

(b) Φ′′(⃗hi).Φ
′′(⃗hj).Φ

′(d) = Φ′(d) whenever h⃗ih⃗jd = d, 1 ≤ i ≤ r and
r + 1 ≤ j ≤ r + s

(c) Φ′′(⃗hs).Φ
′(d).Φ′′(⃗ht) = Φ′(d) whenever h⃗sdh⃗t = d, either 1 ≤ s, t ≤ r or

r + 1 ≤ s, t ≤ r + s.

For 1 ≤ i ≤ r and r + 1 ≤ j ≤ r + s,
Let ei,j = gj−1gj−2 . . . gr+1gi . . . gr−1ergr−1 . . . gigr+1 . . . gj−1

then er,r+1 = er.

ei,j h⃗ih⃗j = (gj−1 . . . gr+1gi . . . gr−1ergr−1 . . . gigr+1 . . . gj−1)⃗hih⃗j

= gj−1 . . . gr+1gi . . . gr−1erh⃗rh⃗r+1gr−1 . . . gigr+1 . . . gj−1, by identity(15)

= gj−1 . . . gr+1gi . . . gr−1ergr−1 . . . gigr+1 . . . gj−1, by identity(17)

= ei,j .

Consider, Φ′(d).Φ′′(⃗hi).Φ
′′(⃗hj)

= Φ′(gj−1 . . . gr+1gi . . . gr−1ergr−1 . . . gigr+1 . . . gj−1)Φ
′′(⃗hi).Φ

′′(⃗hj)
since Φ′ is an algebra homomorphism on Dr,s(x

2) and Φ′ |k(Σr×Σs)= Φ′′ |k(Σr×Σs),

Φ′(d).Φ′′(⃗hi).Φ
′′(⃗hj) = Φ′(gj−1 . . . gr+1gi . . . gr−1)Φ

′(er)Φ
′′(gr−1 . . . gigr+1 . . . gj−1)

Φ′′(⃗hi).Φ
′′(⃗hj)

since Φ′′ is an algebra homomorphism on k(Z2 ≀Σr×Z2 ≀Σs) and using the identity
(15),

Φ′(d).Φ′′(⃗hi).Φ
′′(⃗hj)

= Φ′(gj−1 . . . gr+1gi . . . gr−1)Φ
′(er)Φ

′′(⃗hrh⃗r+1gr−1 . . . gigr+1 . . . gj−1)

= Φ′(gj−1 . . . gi . . . gr−1)Φ
′(er)Φ

′′(⃗hr)Φ
′′(⃗hr+1)Φ

′(gr−1 . . . gigr+1 . . . gj−1)
= Φ′(gj−1 . . . gi . . . gr−1)Φ

′(er)Φ
′(gr−1 . . . gigr+1 . . . gj−1), by identity(17)

= Φ′(d).
Hence (a) holds for d = ei,j ; 1 ≤ i ≤ r and r + 1 ≤ j ≤ r + s.

If dh⃗ih⃗j = d; 1 ≤ i ≤ r and r + 1 ≤ j ≤ r + s
then d has a horizontal edge connecting the vertices i and j, we can write d as,
d = d′ei,j

Φ′(d)Φ′′(⃗hi)Φ
′′(⃗hj) = Φ′(d′)Φ′(ei,j)Φ

′′(⃗hi)Φ
′′(⃗hj)

= Φ′(d′)Φ′(ei,j), by the previous result,

= Φ′(d)

which proves (a).(b) can also be proved similarly.

For (c), d ∈ Dr,s(x
2) with h⃗sdh⃗t = d

then d has an edge connecting the sth vertex in the top row and tth vertex in the
bottom row.
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Take 1 ≤ s, t ≤ r and d has k horizontal edges, d can be written as,
d = dσ.ei1,j1ei2,j2 . . . eik,jk , for some σ ∈ Σr × Σs,
where 1 ≤ i1 < i2 < · · · < ik ≤ r, r + 1 ≤ j1, j2, . . . , jk ≤ r + s and ji’s are all
different and dσ has an edge connecting the sth vertex in the top row and tth vertex
in the bottom row [details in 21].

h⃗sdh⃗t = h⃗s(dσ.ei1,j1ei2,j2 . . . eik,jk )⃗ht

= h⃗sdσh⃗tei1,j1ei2,j2 . . . eik,jk , since t ̸= ip, jq for p, q = 1, 2, . . . , k

= d, since h⃗sdσh⃗t = dσ

Φ′′(⃗hs)Φ
′(d)Φ′′(⃗ht) = Φ′′(⃗hs)Φ

′(dσ.ei1,j1ei2,j2 . . . eik,jk)Φ
′′(⃗ht)

since Φ′ is an algebra homomorphism on Dr,s(x
2) and using the result,

Φ′(ei,j)Φ
′′(⃗hk) = Φ′′(⃗hk)Φ

′(ei,j) if k ̸= i, j (This result has been proved below),

Φ′′(⃗hs)Φ
′(d)Φ′′(⃗ht) = Φ′′(⃗hs)Φ

′(dσ)Φ
′′(⃗ht)Φ

′(ei1,j1)Φ
′(ei2,j2) . . .Φ

′(eik,jk)

= Φ′(d), since Φ′′(⃗hs)Φ
′(dσ)Φ

′′(⃗ht) = Φ′(dσ),

which proves (c).

Similarly, (c) holds for r + 1 ≤ s, t ≤ r + s.

Now, let d⃗ ∈
−→
Dr,s(x) then there exists h⃗, h⃗′ ∈ H such that d⃗ = h⃗dh⃗′, where d is

the underlying walled Brauer diagram of d⃗ and H is a subgroup of Z2 ≀Σr ×Z2 ≀Σs

generated by h⃗i, 1 ≤ i ≤ r + s.

Suppose that there exists another elements h⃗′′, h⃗′′′ ∈ H such that d⃗ = h⃗′′dh⃗′′′.
i.e., h⃗h⃗′′dh⃗′′′h⃗′ = d. By the observations made from (a) to (c),

Φ′′(⃗hh⃗′′)Φ′(d)Φ′′(⃗h′′′h⃗′) = Φ′(d).

Φ′′(⃗h′′)Φ′(d)Φ′′(⃗h′′′) = Φ′′(⃗h)Φ′(d)Φ′′(⃗h′).

So, define Φ :
−→
Dr,s(x) −→ A by Φ(d⃗) = Φ′′(⃗h)Φ′(d)Φ′′(⃗h′).

It is immediate that Φ = Φ′ on Dr,s(x
2), Φ = Φ′′ on k(Z2 ≀Σr×Z2 ≀Σs). Extend

it to the whole space
−→
Dr,s(x) by linearity property.

First, we shall show that

(3.1.1) Φ(ei,j h⃗el,m) = Φ′(ei,j)Φ
′′(⃗h)Φ′(el,m)

where ei,j =
∏
p
eip,jp , el,m =

∏
q
elq,mq , h⃗ =

∏
n
h⃗kn .

The following identities can be established immediately from the definition of
the multiplication of walled signed Brauer diagrams.

For 1 ≤ i, l ≤ r, r + 1 ≤ j,m ≤ r + s , and 1 ≤ k ≤ r + s.
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h⃗kel,m = el,mh⃗k if k ̸= l,m(3.1.2)

ei,j h⃗kel,m = ei,jel,mh⃗k, if k ̸= l,m

= h⃗kei,jel,m, if k ̸= i, j

= ei,kel,mh⃗i, if j = k,m ̸= k, i ̸= l

= h⃗mei,jek,m, if k = l, i ̸= k, j ̸= m

= xei,j , if either i = k = l, j = m or k = j = m, i = l

gi−1ei,jgi−1 = gj−1ei−1,j−1gj−1, | i− j |≥ 2.

By using induction, we shall prove that Φ preserves the relations (3.1.2).

Let 1 ≤ i, l ≤ r, r + 1 ≤ j,m ≤ r + s , and 1 ≤ k ≤ r + s.

Assume that k ̸= l,m then
Φ(⃗hk)Φ(el,m) = Φ′′(⃗hk)Φ

′(el,m)

= Φ′′(⃗hk)Φ
′(gl−1)Φ

′(gm−1)Φ
′(el−1,m−1)Φ

′(gm−1)Φ
′(gl−1), by (3.1.2).

case(1): k ̸= l − 1,m− 1

Φ(⃗hk)Φ(el,m) = Φ′(gl−1)Φ
′(gm−1)Φ

′′(⃗hk)Φ
′(el−1,m−1)Φ

′(gm−1)Φ
′(gl−1),

= Φ′(gl−1)Φ
′(gm−1)Φ

′(el−1,m−1)Φ
′′(⃗hk)Φ

′(gm−1)Φ
′(gl−1), by in-

duction,
= Φ′(el,m)Φ′′(⃗hk) = Φ(el,m)Φ(⃗hk).

case(2): k = l − 1

Φ(⃗hk)Φ(el,m) = Φ′(gl−1)Φ
′′(⃗hl)Φ

′(gm−1)Φ
′(el−1,m−1)Φ

′(gm−1)Φ
′(gl−1),

= Φ′(gl−1)Φ
′(gm−1)Φ

′′(⃗hl)Φ
′(el−1,m−1)Φ

′(gm−1)Φ
′(gl−1),

= Φ′(gl−1)Φ
′(gm−1)Φ

′(el−1,m−1)Φ
′′(⃗hl)Φ

′(gm−1)Φ
′(gl−1), by in-

duction,
= Φ′(el,m)Φ′′(⃗hk) = Φ(el,m)Φ(⃗hk).

Similarly, the result holds for k = m− 1.

From this result, we get,
Φ(ei,j)Φ(⃗hk)Φ(el,m) = Φ(ei,j)Φ(el,m)Φ(⃗hk), if k ̸= l,m

Φ(ei,j)Φ(⃗hk)Φ(el,m) = Φ(⃗hk)Φ(ei,j)Φ(el,m), if k ̸= i, j

Assume that j = k,m ̸= k, i ̸= l, then

Φ(ei,j)Φ(⃗hk)Φ(el,m) = Φ′(ei,k)Φ
′′(⃗hk)Φ

′(el,m),

= Φ′(gi−1)Φ
′(gk−1)Φ

′(ei−1,k−1)Φ
′(gk−1)Φ

′(gi−1)Φ
′′(⃗hk)

Φ′(gl−1)Φ
′(gm−1)Φ

′(el−1,m−1)Φ
′(gm−1)Φ

′(gl−1),

= Φ′(gi−1)Φ
′(gk−1)Φ

′(ei−1,k−1)Φ
′′(⃗hk−1)Φ

′(gk−1)Φ
′(gi−1)

Φ′(gl−1)Φ
′(gm−1)Φ

′(el−1,m−1)Φ
′(gm−1)Φ

′(gl−1),

= Φ′(gi−1)Φ
′(gk−1)Φ

′(gl−1)Φ
′(gm−1)Φ

′(ei−1,k−1)Φ
′′(⃗hk−1)

Φ′(el−1,m−1Φ
′(gk−1)Φ

′(gi−1)Φ
′(gm−1)Φ

′(gl−1),
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Φ(ei,j)Φ(⃗hk)Φ(el,m) = Φ′(gi−1)Φ
′(gk−1)Φ

′(gl−1)Φ
′(gm−1)Φ

′(ei−1,k−1)

Φ′(el−1,m−1)Φ
′′(⃗hi−1)Φ

′(gk−1)Φ
′(gi−1)Φ

′(gm−1)Φ
′(gl−1),

= Φ′(gi−1)Φ
′(gk−1)Φ

′(gl−1)Φ
′(gm−1)Φ

′(ei−1,k−1)

Φ′(el−1,m−1)Φ
′(gk−1)Φ

′(gi−1)Φ
′′(⃗hi)Φ

′(gm−1)Φ
′(gl−1),

= Φ′(ei,k)Φ
′(el,m)Φ′′(⃗hi),

= Φ(ei,k)Φ(el,m)Φ(⃗hi).

The following identity can be proved in the similar way,
Φ(ei,j)Φ(⃗hk)Φ(el,m) = Φ(⃗hm)Φ(ei,j)Φ(el,m) if k = l, i ̸= k, j ̸= m.

Now, assume that i = k = l and j = m, then

Φ(ei,j)Φ(⃗hk)Φ(el,m) = Φ′(ei,j)Φ
′′(⃗hi)Φ

′(ei,j),

= Φ′(gi−1)Φ
′(gj−1)Φ

′(ei−1,j−1)Φ
′(gj−1)Φ

′(gi−1)Φ
′′(⃗hi)

Φ′(gi−1)Φ
′(gj−1) Φ

′(ei−1,j−1)Φ
′(gj−1)Φ

′(gi−1),

Φ(ei,j)Φ(⃗hk)Φ(el,m) = Φ′(gi−1)Φ
′(gj−1)Φ

′(ei−1,j−1)Φ
′′(⃗hi)Φ

′(ei−1,j−1)Φ
′(gj−1)

Φ′(gi−1),
= Φ′(gi−1)Φ

′(gj−1) x Φ′(ei−1,j−1)Φ
′(gj−1)Φ

′(gi−1),
= xΦ′(ei,j) = xΦ(ei,j)

Now,

ei,j h⃗el,m =
∏
p

eip,jp
∏
n

h⃗kn

∏
q

elq,mq

= λh⃗′
∏
p

eip,jp
∏
q

elq,mq h⃗
′′, λ ∈ k(x), from (3.1.2)

Φ(ei,j)Φ(⃗h)Φ(el,m) = Φ′(ei,j)Φ
′′(⃗h)Φ′(el,m),

=
∏
p

Φ′(eip,jp)
∏
n

Φ′′(⃗hkn)
∏
q

Φ′(elq,mq ),

since Φ′ and Φ′′ are homomorphism,

= λΦ′′(⃗h′)
∏
p

Φ′(eip,jp)
∏
q

Φ′(elq,mq )Φ
′′(⃗h′′),

since Φ preserves the relations of (3.1.2) and h⃗′, h⃗′′ ∈ H,
= Φ(ei,j h⃗el,m),

proving our claim.

Let d⃗1, d⃗2 ∈
−→
Dr,s(x) then there exist h⃗(i), h⃗(i)

′
, i = 1, 2 ∈ H such that

d⃗1 = h⃗(1)d1h⃗
(1)′ , d⃗2 = h⃗(2)d2h⃗

(2)′ , where d1, d2 are the underlying walled Brauer
diagrams.

Since d1 = dσ1 .ei1,j1ei2,j2 . . . eik,jk , for some σ1 ∈ Σr × Σs,
where k is the number of horizontal edges in d1, 1 ≤ i1 < i2 < · · · < ik ≤ r ,



1060 Balachandran Kethesan

r + 1 ≤ j1, j2, . . . , jk ≤ r + s and ji’s are all different and
d2 = el1,m1el2,m2 . . . elk′ ,mk′dσ2 , for some σ2 ∈ Σr × Σs,
where k′ is the number of horizontal edges in d2, 1 ≤ l1 < l2 < · · · < lk′ ≤ r ,
r + 1 ≤ m1,m2, . . . ,mk′ ≤ r + s and mi’s are all different.

Φ(d⃗1.d⃗2) = Φ(⃗h(1)dσ1ei1,j1ei2,j2 . . . eik,jk h⃗
(1)′ h⃗(2)el1,m1

el2,m2
. . . elk′ ,mk′ dσ2 .⃗h

(2)′ )

= Φ(⃗h(1)dσ1 h⃗
(3)ei1,j1ei2,j2 . . . eik,jkel1,m1

el2,m2
. . . elk′ ,mk′ h⃗

(3)′dσ2 h⃗
(2)′ ),

where, ei1,j1 . . . eik,jk h⃗
(1)′ h⃗(2)el1,m1

. . . elk′ ,mk′

= h⃗(3)ei1,j1 . . . eik,jkel1,m1
. . . elk′ ,mk′ h⃗

(3)′ ,

= Φ′′ (⃗h(1)dσ1 .⃗h
(3))Φ′(ei1,j1ei2,j2 . . . eik,jkel1,m1

el2,m2
. . . elk′ ,mk′ )

Φ′′ (⃗h(3)
′
dσ2 h⃗

(2)′ ),

= Φ′′ (⃗h(1))Φ′(dσ1 )Φ
′′ (⃗h(3))Φ′(ei1,j1ei2,j2 . . . eik,jk )

Φ′(el1,m1
el2,m2

. . . elk′ ,mk′ )Φ
′′ (⃗h(3)

′
)Φ′(dσ2 )Φ

′′ (⃗h(2)
′
),

= Φ′′ (⃗h(1))Φ′(dσ1 )Φ
′(ei1,j1ei2,j2 . . . eik,jk )Φ

′′ (⃗h(1)
′
)Φ′′ (⃗h(2))

Φ′(el1,m1
el2,m2

. . . elk′ ,mk′ )Φ
′(dσ2 )Φ

′′ (⃗h(2)
′
), from(3.1.1) and(3.1.3)

= Φ(d⃗1).Φ(d⃗2),

hence Φ is an algebra homomorphism. 2

4. Cellularity of Walled Signed Brauer Algebra

In this section, We will show that the walled signed Brauer algebras
−→
Dr,s(x)

form cellular analogous of the towers of recollement introduced in [5] and
−→
Dr,s(x)

are quasi-hereditary.

Suppose that k is arbitrary with r, s > 0 and x ̸= 0 and let e⃗r,s ∈
−→
Dr,s(x)

be x−2 times the diagram with one positive upper horizontal arc connecting r and
r+1, one positive lower horizontal arc connecting r̄ and r + 1 and all the remaining
edges being positive propagating lines from i to ī.

1̄ 2̄ (r − 1) r (r + 1) (r + 2) (r + s)

1 2 r − 1 r r + 1 r + 2 r + s

~er,s =
1

x2

(e⃗r,s)
2 = e⃗r,s.

e⃗r,s is an idempotent in
−→
Dr,s(x).

If x = 0 then we cannot define the idempotent e⃗r,s as above. However, if r

or s is atleast 2 then we can define an alternative idempotent ˜⃗er,s as, the diagram
with one positive upper horizontal arc connecting r and r + 1, one positive lower
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horizontal arc connecting r̄ and r + 2, vertices r + 2 and r + 1 is connected by a
positive propagating line and all the remaining edges being positive propagating
lines from i to ī.

1̄ 2̄ (r − 1) r (r + 1) (r + 2) (r + s)

1 2 r − 1 r r + 1 r + 2 r + s

~̃er,s =

(˜⃗er,s)
2 = ˜⃗er,s.

Proposition 4.1. If x ̸= 0 then for each r, s > 0, there is an algebra isomorphism

between
−→
Dr−1,s−1(x) and e⃗r,s

−→
Dr,s(x)e⃗r,s.

If x = 0 and r ≥ 2 or s ≥ 2, there is an algebra isomorphism between
−→
Dr−1,s−1(x)

and ˜⃗er,s
−→
Dr,s(x) ˜⃗er,s.

Proof. Define a map Φr,s :
−→
Dr−1,s−1(x) −→ e⃗r,s

−→
Dr,s(x)e⃗r,s by

Φr,s(d⃗) = e⃗r,s d⃗′ e⃗r,s, for d⃗ ∈
−→
Dr−1,s−1(x), d⃗′ ∈

−→
Dr,s(x) is obtained by adding two

signed propagating (either positive or negative) lines immediately before and after

the wall in d⃗ so that r is connected to r̄ and r + 1 to r + 1.
It is clear that the map Φr,s is an injective algebra homomorphism and

Φr,s(
−→
Dr−1,s−1) = e⃗r,s

−→
Dr,se⃗r,s.

Hence Φr,s is an isomorphism.
The proof of second statement is similar to the first. 2

Now we define a sequence of idempotents e⃗r,s,i in
−→
Dr,s(x),

set e⃗r,s,0 = 1 and for 1 ≤ i ≤ min(r, s), set e⃗r,s,i = Φr,s(e⃗r−1,s−1,i−1).
Note that when x = 0 and r = s the element e⃗r,r,r is not defined.

To these elements we define associate quotients,
−→
Dr,s,i =

−→
Dr,s/

−→
Dr,s e⃗r,s,i

−→
Dr,s.

When x ̸= 0 we can give an alternative description of the e⃗r,s,i (Via our explicit
description of Φr,s) as x

−2i times the diagram with i positive upper horizontal arcs
connecting r − t to r + 1 + t, i positive lower horizontal arcs connecting r − t to
r + 1 + t) for 0 ≤ t ≤ i − 1 and the remaining edges all positive propagating lines
connecting u to ū for some u. A similar explanation can be given in the case x = 0.
Example,

1̄ 2̄ (r − 1) r (r + 1) (r + 2) (r + s)

1 2 r − 1 r r + 1 r + 2 r + s

~er,s,2 = 1

x4



1062 Balachandran Kethesan

We define the propagating vector of a diagram d⃗ ∈
−→
Dr,s to be the pair

−−−→
(a, b),

where d⃗ has a signed propagating lines to the left of the wall and b to the right and
the remaining upper and lower vertices are joined in pairs with signed horizontal
arcs.
Note that if we multiply two diagrams with propagating vectors

−−−−→
(a1, b1) and

−−−−→
(a2, b2)

then the result must have propagating vector
−−−→
(a, b) with a ≤ min(a1, a2) and

b ≤ min(b1, b2).

Let Ji =
−→
Dr,s e⃗r,s,i

−→
Dr,s

then J0 =
−→
Dr,s e⃗r,s,0

−→
Dr,s =

−→
Dr,s

J1 =
−→
Dr,s e⃗r,s,1

−→
Dr,s ⊂

−→
Dr,s

we get the sequence of ideals

(4.1) .... ⊂ Ji ⊂ Ji−1 ⊂ ...... ⊂ J1 ⊂ J0 =
−→
Dr,s

Proposition 4.2. The ideal Ji has a basis of all diagrams with propagating vector

−−−→
(a, b) for some a ≤ r − i and b ≤ s− i.
In particular the section Ji/Ji+1 in the filtration (4.1) has a basis of all diagram

with propagating vector
−−−−−−−−→
(r − i, s− i).

Proof. The proof follows from the definition of Ji, Theorem(3.2) and the multipli-
cation of walled signed Brauer diagrams defined in Section 3. 2

In particular we have that,

(4.2)
−→
Dr,s/J1 ∼= k(Z2 ≀ Σr × Z2 ≀ Σs),

where Σr and Σs are symmetric groups.

We have some basic results about hyperoctahedral group representation from
[7, 14].

For each bi-partition λ = (λ(1), λ(2)) of n (λ(1) ⊢ k1, λ(2) ⊢ k2 with k1+ k2 = n)
the specht module Sλ for Z2 ≀ Σn [Definiton (2.11.)] is given by

Sλ = zλH, where H is the Iwahori-Hecke algebra of type B and H ∼=
k(Z2 ≀ Σn).

Let Dλ = Sλ/rad Sλ then
{Dλ : λ = (λ(1), λ(2)) is p-regular bi-partition of n} is a complete set of inequiv-
alent irreducible k(Z2 ≀ Σn)- modules.
As k is algebraically closed field ( so a splitting field for Z2 ≀ Σr and Z2 ≀ Σs).
Therefore the simple modules for k(Z2 ≀ Σr × Z2 ≀ Σs) are precisely those modules

of the form DλL �DλR

(outer tensor product), where DλL

is a simple k(Z2 ≀ Σr)

- module, DλR

a simple k(Z2 ≀ Σs) - module [6, Theorem 10.33], and λL is a
p-regular bi-partition of r and λR is a p-regular bi-partition of s.
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Denote,
Λ⃗r,s
reg = {(λL, λR) : λLis p regular bi-partition of r, λR is p regular bi-partition of s}.

If p = 0 or p > max(r, s) then the group algebra k(Z2 ≀ Σr × Z2 ≀ Σs) is semi
simple.

Let Λ⃗r,s={(λL, λR) | λL is bi-partition of r, λR is bi-partition of s}.
Let Λ⃗r,s denote the indexing set for the simple

−→
Dr,s- modules. From proposition

(4.1.), we can define an exact localization functor,

Fr,s :
−→
Dr,s- mod −→ −→

Dr−1,s−1- mod by Fr,s(M) = e⃗r,s M ;M ∈ −→Dr,s-
mod, and a corresponding right exact globalization functor Gr−1,s−1 in the opposite
direction,

Gr−1,s−1 :
−→
Dr−1,s−1- mod −→

−→
Dr,s- mod by

Gr−1,s−1(N) =
−→
Dr,s e⃗r,s ⊗e⃗r,s

−→
Dr,se⃗r,s

N ; N ∈
−→
Dr−1,s−1 - mod.

By Theorem 1 in [5] and (4.2), we have that, for r, s > 0

Λ⃗r,s = Λ⃗r−1,s−1 ⊔ Λ⃗r,s
reg.

Proposition 4.3. If x ̸= 0 or r ̸= s then

Λ⃗r,s =
min(r,s)⊔

i=0

Λ⃗r−i,s−i
reg .

Proof. Since

Λ⃗r,s = Λ⃗r−1,s−1 ⊔ Λ⃗r,s
reg

= Λ⃗r−2,s−2 ⊔ Λ⃗r−1,s−1
reg ⊔ Λ⃗r,s

reg and so on, we have,

Λ⃗r,s =

min(r,s)⊔
i=0

Λ⃗r−i,s−i
reg as

−→
Dr,0

∼=
−→
D0,r

∼= k(Z2 ≀ Σr)(4.3)

2

We shall describe the walled signed Brauer algebra in terms of partial one-row
diagrams.

Given a walled signed Brauer diagram d⃗ ∈
−→
Dr,s with t signed upper horizontal

and t signed lower horizontal arcs.
Denote by d⃗+ the configuration formed by the signed upper horizontal arcs in d⃗, and
by d⃗− the configuration formed by the signed lower horizontal arcs in d⃗. Renumber
the upper vertices of the propagating lines in d⃗ from left to right as 1, 2, . . . , r −
t, r − t + 1, r − t + 2, . . . r + s − 2t and their lower vertices from left to right as
1̄, 2̄, . . . , r − t, r − t+ 1, . . . , r + s− 2t. Then the propagating lines define an element
σd = (σ, f) ∈ Z2 ≀ Σr−t × Z2 ≀ Σs−t such that σ(i) = j if the ith upper vertex on
a propagating line is connected to the lower vertex j, where σ ∈ Σr−t × Σs−t and
f : {1, 2, . . . , r − t, r − t+ 1, . . . r + s− 2t} −→ Z2 with

f(i) =

{
0, if the corresponding propagating line is positive;
1, if the corresponding propagating line is negative.

Therefore d⃗ is uniquely written as
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d⃗ = Xd⃗+,d⃗−,σd
.

We denote the set of elements d⃗+ arising thus by νr,s,t (and by abuse of notation

use the same set to refer to the elements d⃗− that arise), and call this the set of partial
one-row (r, s, t) diagrams.

Lemma 4.4. Let Vl be the vector space over k(x) with basis νr,s,l. then for l > 0
the algebra Jl/Jl+1 is isomorphic to an inflation Vl ⊗ Vl ⊗ k(Z2 ≀ Σr−l × Z2 ≀ Σs−l)
of k(Z2 ≀ Σr−l × Z2 ≀ Σs−l) along a free k-module Vl of rank | νr,s,l | with respect to
some bilinear form (we shall define in the proof).

Proof. Let ψ : Vl ⊗ Vl ⊗ k(Z2 ≀Σr−l ×Z2 ≀Σs−l) −→ Jl/Jl+1 be a map is defined by

ψ(d⃗+ ⊗ d⃗− ⊗ σd) = Xd⃗+,d⃗−,σd

We have to define ϕl;

Let d⃗1
+
⊗ d⃗1

−
⊗ σd1 , d⃗2

+
⊗ d⃗2

−
⊗ σd2 ∈ Vl ⊗ Vl ⊗ k(Z2 ≀ Σr−l × Z2 ≀ Σs−l).

Then, we have ψ(d⃗1
+
⊗ d⃗1

−
⊗ σd1) = X

d⃗1
+
,d⃗1

−
,σd1

∈
−→
Dr,s(x) and

ψ(d⃗2
+
⊗ d⃗2

−
⊗ σd2) = X

d⃗2
+
,d⃗2

−
,σd2

∈
−→
Dr,s(x)

By definition of the multiplication in
−→
Dr,s(x), we have, Xd⃗1

+
,d⃗1

−
,σd1

.X
d⃗2

+
,d⃗2

−
,σd2

=

xt.d⃗,
where t is the number of closed loops in the product X

d⃗1
+
,d⃗1

−
,σd1

. X
d⃗2

+
,d⃗2

−
,σd2

and

d⃗ ∈
−→
Dr,s(x) having 2l or more signed horizontal edges.

Since (d⃗1
+
⊗ d⃗1

−
⊗ σd1).(d⃗2

+
⊗ d⃗2

−
⊗ σd2) = d⃗1

+
⊗ d⃗2

−
⊗ σd1ϕl(d

−
1 , d

+
2 )σd2 .

If this product X
d⃗1

+
,d⃗1

−
,σd1

. X
d⃗2

+
,d⃗2

−
,σd2

does not have propagating vector (r −
l, s− l) then
set ϕl(d⃗1

−
, d⃗2

+
) = 0, other wise, ϕl(d⃗1

−
, d⃗2

+
) = xt σd ; where σd ∈ k(Z2 ≀Σr−l×Z2 ≀

Σs−l) such that X
d⃗1

+
,d⃗1

−
,σd1

. X
d⃗2

+
,d⃗2

−
,σd2

= xt.d⃗ = xt.X
d⃗1

+
,d⃗2

−
,σd1

σdσd2

. Consider,

ψ((d⃗1
+ ⊗ d⃗1

− ⊗ σd1 ).(d⃗2
+ ⊗ d⃗2

− ⊗ σd2 )) = ψ(d⃗1
+ ⊗ d⃗2

− ⊗ σd1ϕl(d
−
1 , d

+
2 )σd2 )

= ψ(d⃗1
+ ⊗ d⃗2

− ⊗ σd1 (x
t σd)σd2 )

= xt X
d⃗1

+
,d⃗2

−
,σd1

σdσd2

= X
d⃗1

+
,d⃗1

−
,σd1

. X
d⃗2

+
,d⃗2

−
,σd2

ψ((d⃗1
+ ⊗ d⃗1

− ⊗ σd1 ).(d⃗2
+ ⊗ d⃗2

− ⊗ σd2 )) = ψ(d⃗1
+ ⊗ d⃗1

− ⊗ σd1 ).ψ(d⃗2
+ ⊗ d⃗2

− ⊗ σd2 )

ψ is the algebra homomorphism.

Suppose that ψ(d⃗1
+
⊗ d⃗1

−
⊗ σd1) = ψ(d⃗2

+
⊗ d⃗2

−
⊗ σd2)

then X
d⃗1

+
,d⃗1

−
,σd1

= X
d⃗2

+
,d⃗2

−
,σd2

d⃗1
+
= d⃗2

+
, d⃗1

−
= d⃗2

−
, σd1 = σd2 and d⃗1

+
⊗ d⃗1

−
⊗ σd1 = d⃗2

+
⊗ d⃗2

−
⊗ σd2

ψ is one-to-one.
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Now let d⃗ ∈ Jl/Jl+1 then d⃗ = Xd⃗+,d⃗−,σd
.

Consider,
ψ(d⃗+ ⊗ d⃗− ⊗ σd) = Xd⃗+,d⃗−,σd

= d⃗

ψ is onto, since d⃗+ ⊗ d⃗− ⊗ σd ∈ Vl ⊗ Vl ⊗ k(Z2 ≀ Σr−l × Z2 ≀ Σs−l)
Hence ψ is an isomorphism. 2

Lemma 4.5. Let d⃗1 ∈ Jm/Jm+1 and d⃗2 ∈ Jn/Jn+1 be two diagrams in
−→
Dr,s whose

pre image is d⃗+1 ⊗ d⃗
−
1 ⊗σ1 and d⃗+2 ⊗ d⃗

−
2 ⊗σ2 respectively, under the bilinear forms for

their respective layers. We assume that n ≥ m. Then the product d⃗1.d⃗2 is either an
element of Jn/Jn+1 , or is an element of Jn+1. In the former case it corresponds

under ψ to a scalar multiple of an element d⃗′+ ⊗ d⃗+2 ⊗ µσ2; where d⃗′+ ∈ Vn and
µ ∈ k(Z2 ≀ Σr−n × Z2 ≀ Σs−n).
There is a similar statement for n ≤ m.
Proof. The proofs of both statements are very similar to that of Lemma 4.4. 2

Lemma 4.6. The involution on
−→
Dr,s corresponds to the standard involution on

Vl ⊗ Vl ⊗ k(Z2 ≀ Σr−l × Z2 ≀ Σs−l) which sends d⃗+ ⊗ d⃗− ⊗ σ to d⃗− ⊗ d⃗+ ⊗ σ−1.

Proof. The proof follows easily from the definition of the involution as the reflection
in the horizontal axis. 2

Proposition 4.7. The walled signed Brauer algebra
−→
Dr,s is an iterated inflation

of group algebra of the form (Z2 ≀Σr−l ×Z2 ≀Σs−l) for 0 ≤ l ≤ min(r, s) along Vl.
Proof. By the above lemmas, the fact that k(Z2 ≀ Σr × Z2 ≀ Σs) is cellular, and the
proposition 2.17., we have that,−→
Dr,s(x) is an iterated inflation of the group algebra of (Z2 ≀Σr ×Z2 ≀Σs) and hence

as a k-module
−→
Dr,s(x) is equal to

k(Z2 ≀Σr ×Z2 ≀Σs)⊕ (V1⊗V1⊗ k(Z2 ≀Σr−1×Z2 ≀Σs−1))⊕ (V2⊗V2⊗ k(Z2 ≀Σr−2×
Z2 ≀ Σs−2))⊕ . . . . . .
and the iterated inflation starts with k(Z2 ≀Σr ×Z2 ≀Σs) inflates it along V1 ⊗ V1⊗
k(Z2 ≀ Σr−1 × Z2 ≀ Σs−1) and so on, ending with an inflation of k = k(Z2 ≀ Σ1) or
k = k(Z2 ≀ Σ0) as bottom layer (depending on whether (r + s) is odd or even). 2

Theorem 4.8.

(i) The walled signed Brauer algebra
−→
Dr,s is cellular with a cell module ∆r,s(λ

L, λR)

for each (λL, λR) ∈ Λ⃗r−l,s−l with 0 ≤ l ≤ min(r, s).

(ii) If x ̸= 0 or r ̸= s then the simple modules are indexed by all pair (l, λL, λR),

where 0 ≤ l ≤ min(r, s) and (λL, λR) ∈ Λ⃗r−l,s−l
reg .

(iii) If x = 0 and r = s we get the same indexing set for simple modules as in (ii);
but with the single simple corresponding to l = min(r, s).

Proof. (i) From the basis definition in [8], we have the following result,
A cell basis for k(Z2 ≀ Σr × Z2 ≀ Σs) can be obtained as a product of cell basis for
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k(Z2 ≀ Σr) and k(Z2 ≀ Σs).
Hence k(Z2 ≀Σr × Z2 ≀Σs) is cellular with cell modules of the form M �N , where
M,N are cell modules for k(Z2 ≀ Σr) and k(Z2 ≀ Σs) respectively.
By Proposition 4.7. and Theorem 2.18., we have,−→
Dr,s is cellular with cell module ∆r,s(λ

L, λR) for each (λL, λR) ∈ Λ⃗r−l,s−l.

(ii) by Proposition 4.3, for x ̸= 0 or r ̸= s, the simple modules of
−→
Dr,s are indexed

by all pair (l, λL, λR), where 0 ≤ l ≤ min(r, s) and (λL, λR) ∈ Λ⃗r−l,s−l
reg .

(iii) In the case of x = 0, the above assertion is also valid except that the case l = 0
(which occurs only for r even) does not contribute a simple module. 2

Corollary 4.9 If either p = 0 or p > max(r, s) and either x ̸= 0 or x = 0 and

r ̸= s then the algebra
−→
Dr,s(x) is quasi-hereditary with heredity chain induced by

the idempotent e⃗r,s,i. In all other cases
−→
Dr,s(x) is not quasi-hereditary.

Proof. The proof follows immediately form the fact that a cellular algebra is quasi-
hereditary precisely when there are the same number of simples as cell modules.−→
Dr,s is quasi-hereditary with heredity chain

.... ⊂ Ji ⊂ Ji−1 ⊂ ...... ⊂ J1 ⊂ J0 =
−→
Dr,s, where Ji =

−→
Dr,s e⃗r,s,i

−→
Dr,s. 2

Conclusion. We established the cellularity of walled signed Brauer algebras and we
also give a necessary and sufficient condition for the walled signed Brauer algebras to
be quasi-hereditary. As an application of this paper, we will describe the irreducible
representations of a certain Lie superalgebra, by using [8] and Schur-Weyl duality,
in our subsequent paper.
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