• Title/Summary/Keyword: civil structure

Search Result 5,549, Processing Time 0.029 seconds

Fluctuating wind field analysis based on random Fourier spectrum for wind induced response of high-rise structures

  • Lin, Li;Ang, A.H.S.;Xia, Dan-dan;Hu, Hai-tao;Wang, Huai-feng;He, Fu-qiang
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.837-846
    • /
    • 2017
  • An accurate calculation of the stochastic wind field is the foundation for analyzing wind-induced structure response and reliability. In this research, the spatial correlation of structural wind field was considered based on the time domain method. A method for calculating the stochastic wind field based on cross stochastic Fourier spectrum was proposed. A flowchart of the proposed methodology is also presented in this study to represent the algorithm and workflow. Along with the analysis of regional wind speed distribution, the wind speed time history sample was calculated, and the efficiency can therefore be verified. Results show that the proposed method and programs could provide an efficient simulation for the wind-induced structure response analysis, and help determine the related parameters easily.

Experimental study on a new type of assembly bolted end-plate connection

  • Li, Shufeng;Li, Qingning;Jiang, Haotian;Zhang, Hao;Yan, Lei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.463-471
    • /
    • 2018
  • The bolted end-plate beam-column connections have been widely used in steel structure and composite structure because of its excellent seismic performance. In this paper, the end-plate bolted connection is applied in the concrete structure, A new-type of fabricated beam-column connections with end-plates is presented, and steel plate hoop is used to replace stirrups in the node core area. To study the seismic behavior of the joint, seven specimens are tested by pseudo-static test. The experimental results show that the new type of assembly node has good ductility and energy dissipation capacity. Besides, under the restraint effect of the high-strength stirrup, the width of the web crack is effectively controlled. In addition, based on the analysis of the factors affecting the shear capacity of the node core area, the formula of shear capacity of the core area of the node is proposed, and the theoretical values of the formula are consistent with the experimental value.

Optimal design of multiple tuned mass dampers for vibration control of a cable-supported roof

  • Wang, X.C.;Teng, Q.;Duan, Y.F.;Yun, C.B.;Dong, S.L.;Lou, W.J.
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.545-558
    • /
    • 2020
  • A design method of a Multiple Tuned Mass Damper (MTMD) system is presented for wind induced vibration control of a cable-supported roof structure. Modal contribution analysis is carried out to determine the dominating modes of the structure for the MTMD design. Two MTMD systems are developed for two most dominating modes. Each MTMD system is composed of multiple TMDs with small masses spread at multiple locations with large responses in the corresponding mode. Frequencies of TMDs are distributed uniformly within a range around the dominating frequencies of the roof structure to enhance the robustness of the MTMD system against uncertainties of structural frequencies. Parameter optimizations are carried out by minimizing objective functions regarding the structural responses, TMD strokes, robustness and mass cost. Two optimization approaches are used: Single Objective Approach (SOA) using Sequential Quadratic Programming (SQP) with multi-start method and Multi-Objective Approach (MOA) using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The computation efficiency of the MOA is found to be superior to the SOA with consistent optimization results. A Pareto optimal front is obtained regarding the control performance and the total weight of the TMDs, from which several specific design options are proposed. The final design may be selected based on the Pareto optimal front and other engineering factors.

Development of BIM Library for Civil Structures based on Standardized Drawings-Focused on 2D Standard Drawings of The MOLIT (표준도 기반의 토목구조물 BIM 라이브러리 개발 -국토교통부 표준도를 대상으로)

  • Moon, HyounSeok;Ju, KiBum
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.80-90
    • /
    • 2014
  • In architecture projects, BIM library has widely been using for prefabrication of products and design process. However, since the shape of structures is different by each project in civil engineering projects and a shape representation system is complicated, it is not easy to develop a standardized BIM library. To solve these issues, this study develops BIM library based on standardized 2D shop drawings for civil structures. The standardized shop drawings, which are the targets of the BIM library model, should be first selected. Besides, in order to define modeling scope with the level of general and shop drawings for each structure, LOD(Level of Detail) and breakdown structure are determined, and development methods of families of 3D object type including 2D profile and rebar through commercial software are established. With these, properties of BIM library are configured, and a utilization model of the BIM libraries is constructed for 3D modeling and a simulation using the BIM library. Therefore, this study can identify properties that are necessary when IFC schema is configured for civil engineering projects. For future, it is expected that easiness of BIM design for the civil engineering projects and generation, management, and analysis system of BIM library for road projects will be secured.

Impact of the Thruster Jet Flow of Ultra-large Container Ships on the Stability of Quay Walls

  • Hwang, Taegeon;Yeom, Gyeong-Seon;Seo, Minjang;Lee, Changmin;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.403-413
    • /
    • 2021
  • As the size of ships increases, the size and output power of their thrusters also increase. When a large ship berths or unberths, the jet flow produced from its thruster has an adverse effect on the stability of quay walls. In this study, we conducted a numerical analysis to examine the impact of the thruster jet flow of a 30,000 TEU container ship, which is expected to be built in the near future, on the stability of a quay wall. In the numerical simulation, we used the fluid-structure interaction analysis technique of LS-DYNA, which is calculated by the overlapping capability using an arbitrary Lagrangian Eulerian formulation and Euler-Lagrange coupling algorithm with an explicit finite element method. As the ship approached the quay wall and the vertical position of the thruster approached the mound of the quay wall, the jet flow directly affected the foot-protection blocks and armor stones. The movement and separation of the foot-protection blocks and armor stones were confirmed in the area affected directly by the thruster jet flow of the container ship. Therefore, the thruster jet flows of ultra-large ships must be considered when planning and designing ports. In addition, the stability of existing port structures must be evaluated.

Wind-induced random vibration of saddle membrane structures: Theoretical and experimental study

  • Rongjie Pan;Changjiang Liu;Dong Li;Yuanjun Sun;Weibin Huang;Ziye Chen
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.133-147
    • /
    • 2023
  • The random vibration of saddle membrane structures under wind load is studied theoretically and experimentally. First, the nonlinear random vibration differential equations of saddle membrane structures under wind loads are established based on von Karman's large deflection theory, thin shell theory and potential flow theory. The probabilistic density function (PDF) and its corresponding statistical parameters of the displacement response of membrane structure are obtained by using the diffusion process theory and the Fokker Planck Kolmogorov equation method (FPK) to solve the equation. Furthermore, a wind tunnel test is carried out to obtain the displacement time history data of the test model under wind load, and the statistical characteristics of the displacement time history of the prototype model are obtained by similarity theory and probability statistics method. Finally, the rationality of the theoretical model is verified by comparing the experimental model with the theoretical model. The results show that the theoretical model agrees with the experimental model, and the random vibration response can be effectively reduced by increasing the initial pretension force and the rise-span ratio within a certain range. The research methods can provide a theoretical reference for the random vibration of the membrane structure, and also be the foundation of structural reliability of membrane structure based on wind-induced response.

The influence of fine particle migration on pore structure of overlying ballast under cyclic loading

  • Yu Ding;Yu Jia;Zhongling Zong;Xuan Wang;Jiasheng Zhang;Min Ni
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.627-636
    • /
    • 2023
  • The essence of subgrade mud pumping under train load is the migration of fine particles in subgrade soil. The migration of fine particles will change the pore structure of overlying ballast, thus affecting the mechanical properties and hydraulic properties of ballast layer. It is of great theoretical significance and engineering value to study the effect of fine particle migration on the pore structure of ballast layer under cyclic loading. In this paper, a tailor-made subgrade mud pumping test model and an X-ray computed tomography (CT) scanning equipment were used to study the influence of migration of fine particles in subgrade soil on the pore parameters (plane porosity, volume porosity, pore distribution and pore connectivity) of overlying ballast under cyclic loading. The results show that the compression of ballast pores and the blockage of migrated fine particles make the porosity of ballast layer decreases gradually. And the percentage of small pores in ballast layer increases, while the percentage of large pores decreases; the connectivity of pores also gradually decreases. Based on the test results, an empirical model of ballast porosity evolution under cyclic loading is established and verified.

The Characteristics of Strength and Consolidation of Clayey Soil Dependent on pH of Soil Pore Water (간극수의 pH가 점성토의 강도와 압밀특성에 미치는 영향)

  • Lee, Ho-Jin;Kim, Byung-Il;Park, Sang-Kyu;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1047-1054
    • /
    • 2005
  • The purpose of this study is the understanding to changes in the characteristic of soil structure and classification, atterberg limits, undrained shear strength and consolidation of clayey soil dependent on pH of soil pore water. A series of tests including consistency tests, uniaxial compressive tests, vane tests and oedometer tests are performed on. The test results indicated that pH changes in the soil pH resulted in changes in the soil structure and classification, stress-strain behavior. Specially, when pH is conditioned to 7, liquid limit, undrained shear strength and preconsolidation pressure are the largest.

  • PDF

Progressive collapse analysis of steel frame structure based on the energy principle

  • Chen, Chang Hong;Zhu, Yan Fei;Yao, Yao;Huang, Ying
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.553-571
    • /
    • 2016
  • The progressive collapse potential of steel moment framed structures due to abrupt removal of a column is investigated based on the energy principle. Based on the changes of component's internal energy, this paper analyzes structural member's sensitivity to abrupt removal of a column to determine a sub-structure resisting progressive collapse. An energy-based structural damage index is defined to judge whether progressive collapse occurs in a structure. Then, a simplified beam damage model is proposed to analyze the energies absorbed and dissipated by structural beams at large deflections, and a simplified modified plastic hinges model is developed to consider catenary action in beams. In addition, the correlation between bending moment and axial force in a beam during the whole deformation development process is analyzed and modified, which shows good agreement with the experimental results.

Numerical study for vibration response of concrete beams reinforced by nanoparticles

  • Heidari, Ali;Keikha, Reza;Haghighi, Mohammad Salkhordeh;Hosseinabadi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.311-316
    • /
    • 2018
  • Vibration of concrete beams reinforced by agglomerated silicon dioxide ($SiO_2$) nanoparticles is studied based on numerical methods. The structure is simulated by Euler-Bernoulli beam model and the Mori-Tanaka model is used for obtaining the effective material properties of the structure. The concrete beam is located in soil medium which is modeled by spring elements. The motion equations are derived based on energy method and Hamilton's principle. Based on exact solution, the frequency of the structure is calculated. The effects of different parameters such as volume percent of $SiO_2$ nanoparticles and agglomeration, soil medium and geometrical parameters of beam are shown on the frequency of system. The results show that with increasing the volume percent of $SiO_2$ nanoparticles, the frequency increases.