• Title/Summary/Keyword: circuit power

Search Result 6,851, Processing Time 0.027 seconds

A Study on Optimal Design of Capacitance for Active Power Decoupling Circuits (능동 전력 디커플링 회로의 커패시턴스 최적 설계에 관한 연구)

  • Baek, Ki-Ho;Park, Sung-Min;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.181-190
    • /
    • 2019
  • Active power decoupling circuits have emerged to eliminate the inherent second-order ripple power in a single-phase power conversion system. This study proposes a design method to determine the optimal capacitance for active power decoupling circuits to achieve high power density. Minimum capacitance is derived by analyzing ripple power in a passive power decoupling circuit, a buck-type circuit, and a capacitor-split-type circuit. Double-frequency ripple power decoupling capabilities are also analyzed in three decoupling circuits under a 3.3 kW load condition for a battery charger application. To verify the proposed design method, the performance of the three decoupling circuits with the derived minimum capacitance is compared and analyzed through the results of MATLAB -Simulink and hardware-in-the-loop simulations.

Design of a Vibration Energy Harvesting Circuit With MPPT Control (MPPT 제어 기능을 갖는 진동에너지 하베스팅 회로 설계)

  • Park, Joon-Ho;Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2457-2464
    • /
    • 2011
  • In this paper, a vibration energy harvesting circuit using a piezoelectric device is designed. MPPT(Maximum Power Point Tracking) control function is implemented using the electric power-voltage characteristic of a piezoelectric device to deliver the maximum power to load. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a full-wave rectifier circuit connected to the piezoelectric device output and delivers the maximum available power to load. The proposed vibration energy harvesting circuit is designed with $0.18{\mu}m$ CMOS process. Simulation results show that the maximum power efficiency of the designed circuit is 91%, and the chip area except pads is $700{\mu}m{\times}730{\mu}m$.

A New Single-Stage Small Power MH lamp Electronic Ballast

  • Zhang, Xiaoqiang;Zhang, Weiping;Zhang, Mao
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.79-85
    • /
    • 2016
  • In this study, we proposed a new single-stage small power MH lamp electronic ballast and power-factor correction circuit with improved circuit by the current of passive power factor correction. Main circuit integrates traditional DC/DC and DC/AC circuits into one-stage DC/AC inverter. Moreover, we described the working principle and control strategy of the new circuit; it's soft switching principle; and resonant element parameter design formula. An experimental prototype of HID lamp electronic ballast with output power of 70 W was built to verify the feasibility of the analysis and design. The simulation and experimental results proved that the power factor of this circuit could reach 94%, with efficiency of 90%. The input current harmonics conform to IEC 61000-3-2 standards and its cost is low. These superior performances of the new circuit indicate certain practical values.

A study on the Drive Circuit Design in the Power Line Communication (PLC에서의 구동회로설계에 관한 연구)

  • Choi, Tae-Seop;Lim, Seung-Ha
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1301-1304
    • /
    • 2005
  • In this paper, we used class D amplification circuit proposed to improve the decline of error rate caused by rapidly variable impedance in the Power Line Communication. We manufactured voltage drive circuit and current drive circuit that are driven circuit of power line modem on the present. And with the same power line modem, we made a comparison experiment applying the driver circuit that used class D amplifier proposed in this paper. As a result of Experiment, We showed that it has more superior than other existing drive circuits at the impedance change in the power line communication.

  • PDF

Isolated Power Supply for Multiple Gate Drivers using Wireless Power Transfer System with Single-Antenna Receiver

  • Lim, Chang-Jong;Park, Shihong
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1382-1390
    • /
    • 2017
  • This paper presents a power supply for gate drivers, which uses a magnetic resonance wireless power transfer system. Unlike other methods where multiple antennas are used to supply power for the gate drivers, the proposed method uses a single antenna in an insulated receiver to make multiple mutually isolated power supplies. The power transmitted via single antenna is distributed to multiple power supplies for gate drivers through resonant capacitors connected in parallel that also block DC bias. This approach has many advantages over other methods, where each gate driver needs to be supplied with power using multiple receiver antennas. The proposed method will therefore lead to a reduction in production costs and circuit area. Because the proposed circuit uses a high resonance frequency of 6.78 MHz, it is possible to implement a transmitter and a receiver using a small-sized spiral printed-circuit-board-type antenna. This paper used a single phase-leg circuit configuration to experimentally verify the performance characteristics of the proposed method.

Development of a Sensor-Based LED Lighting System with Low Standby Power (대기전력 저감형 LED 센서 조명시스템의 개발)

  • Kim, Jin-Geun;Kang, Moon-Sung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.18-22
    • /
    • 2012
  • In this paper, we propose a sensor-based LED lighting system that can significantly reduce standby powers. The proposed LED lighting system has the more advanced power circuit and control mechanism compared to existing one. The whole power circuit consists of two subcircuits. One is designed to apply electric powers to controller, PIR(Pyroelectric Infrared Ray) sensor and CdS, and the other one is designed to apply electric powers to LED module. Such a power circuit configuration makes the standby powers reduction of LED lighting system possible. From the experimental results, we confirmed that the standby powers saving performance of the developed power circuit is superior to that of the conventional one.

A Study on the stability of boost power factor correction circuit with voltage feedback loop (전압제어루프를 고려한 부스트방식 역률개선회로의 안정도에 관한 연구)

  • Kim, Cherl-Jin;Jang, Jun-Young;Ji, Jae-Geun;Song, Yo-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.271-273
    • /
    • 2002
  • Switching power supply are widely used in many industrial field. Power factor correction(PFC) has become an increasingly necessary feature in new power supply designs. The power factor correction circuit using boost converter used in input of power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, it is analyzed regulation performance of output voltage and compensator to improve of transient response that presented at continuous conduction mode(CCM) of boost PFC circuit. The validity of designed boost PFC circuit is confirmed by simulation and experimental results.

  • PDF

A Continuous Conduction mode/Critical Conduction Mode Active Power Factor Correction Circuit with Input Voltage Sensor-less Control (입력전압을 감지하지 않는 전류연속/임계동작모드 Active Power Factor Correction Circuit)

  • Roh, Yong-Seong;Yoo, Changsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.151-161
    • /
    • 2013
  • An active power factor correction (PFC) circuit is presented which employs a newly proposed input voltage sensor-less control technique operated in continuous conduction mode (CCM) and critical conduction mode (CRM). The conventional PFC circuit with input voltage sensor-less control technique degrades the power factor (PF) under the light load condition due to DCM operation. In the proposed PFC circuit, the switching frequency is basically 70KHz in CCM operation. In light load condition, however, the PFC circuit operates in CRM and the switching frequency is increased up to 200KHz. So CCM/CRM operation of the PFC circuit alleviates the decreasing of the PF in light load condition. The proposed PFC controller IC has been implemented in a $0.35{\mu}m$ BCDMOS process and a 240W PFC prototype is built. Experimental results shows the PF of the proposed PFC circuit is improved up to 10% from the one employing the conventional CCM/DCM dual mode control technique. Also, the PF is improved up to 4% in the light load condition of the IEC 61000-3-2 Class D specifications.

A Feedback Circuit of Effective Wireless Power Transfer for Low Power System

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.480-483
    • /
    • 2018
  • Wireless power transfer (WPT) is the technology that forces the power to transmit electromagnetic field to an electrical load through an air gap without interconnecting wires. This technology is widely used for the applications from low power smartphone to high power electric railroad. In this paper, the model of wireless power transfer circuit for the low power system is designed for a resonant frequency of 13.45 MHz. Also, a feedback WPT circuit to improve the power transfer efficiency is proposed and shown better performance than the original open WPT circuit, and the methodology for power efficiency improvement is studied as the coupling coefficient increases above 0.01, at which the split frequency is made.

The development of 110/220V alternative static output ballast by using passive power factor correction circuit (수동역률 개선회로를 이용한 110/220V 겸용 정출력 안정기 개발)

  • Song, Myung-Suk;Jo, Gye-Hyun;Park, Chong-Yeun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.210-213
    • /
    • 2004
  • In this paper, we propose the passive PFC(Power Factor Correction) circuit of an electronic ballast with the constant power the detection circuit for 110 or 220 volt. The proposed PFC circuit is composed with the modified dither circuit and the input voltage detection circuit. We have concluded that the proposed method is the attractive method to improve of power factor for the electronic ballast with the input voltage regulation and it is a similar experimental results with other active power factor correction method using other PWM ICs.

  • PDF