• Title/Summary/Keyword: circuit

Search Result 17,007, Processing Time 0.044 seconds

Arc Extinguishment for Low-voltage DC (LVDC) Circuit Breaker by PPTC Device (PPTC 소자를 사용한 저전압 직류차단기의 아크소호기술)

  • Kim, Yong-Jung;Na, Jeaho;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.299-304
    • /
    • 2018
  • An ideal circuit breaker should supply electric power to loads without losses in a conduction state and completely isolate the load from the power source by providing insulation strength in a break state. Fault current is relatively easy to break in an Alternating Current (AC) circuit breaker because the AC current becomes zero at every half cycle. However, fault current in DC circuit breaker (DCCB) should be reduced by generating a high arc voltage at the breaker contact point. Large fire may occur if the DCCB does not take sufficient arc voltage and allows the continuous flow of the arc fault current with high temperature. A semiconductor circuit breaker with a power electronic device has many advantages. These advantages include quick breaking time, lack of arc generation, and lower noise than mechanical circuit breakers. However, a large load capacity cannot be applied because of large conduction loss. An extinguishing technology of DCCB with polymeric positive temperature coefficient (PPTC) device is proposed and evaluated through experiments in this study to take advantage of low conduction loss of mechanical circuit breaker and arcless breaking characteristic of semiconductor devices.

Analysis of a Parasitic-Diode-Triggered Electrostatic Discharge Protection Circuit for 12 V Applications

  • Song, Bo Bae;Lee, Byung Seok;Yang, Yil Suk;Koo, Yong-Seo
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.746-755
    • /
    • 2017
  • In this paper, an electrostatic discharge (ESD) protection circuit is designed for use as a 12 V power clamp by using a parasitic-diode-triggered silicon controlled rectifier. The breakdown voltage and trigger voltage ($V_t$) of the proposed ESD protection circuit are improved by varying the length between the n-well and the p-well, and by adding $n^+/p^+$ floating regions. Moreover, the holding voltage ($V_h$) is improved by using segmented technology. The proposed circuit was fabricated using a $0.18-{\mu}m$ bipolar-CMOS-DMOS process with a width of $100{\mu}m$. The electrical characteristics and robustness of the proposed ESD circuit were analyzed using transmission line pulse measurements and an ESD pulse generator. The electrical characteristics of the proposed circuit were also analyzed at high temperature (300 K to 500 K) to verify thermal performance. After optimization, the $V_t$ of the proposed circuit increased from 14 V to 27.8 V, and $V_h$ increased from 5.3 V to 13.6 V. The proposed circuit exhibited good robustness characteristics, enduring human-body-model surges at 7.4 kV and machine-model surges at 450 V.

Circuit Modeling of 3-D Parallel-plate Capacitors Fabricated by LTCC Process

  • Shin, Dong-Wook;Oh, Chang-Hoon;Yun, Il-Gu;Lee, Kyu-Bok;Kim, Jong-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.19-23
    • /
    • 2004
  • A novel method of high speed, accurate circuit simulation in 3-dimensional (3-D) parallel-plate capacitors is investigated. The basic concept of the circuit simulation methods is partial element equivalent circuit model. The three test structures of 3-D parallel-plate capacitors are fabricated by using multi-layer low-temperature co-fired ceramic (LTCC) process and their S-parameters are measured between 50 MHz and 5 GHz. S-parameters are converted to Y-parameters, for comparing measured data with simulated data. The circuit model parameters of the each building block are optimized and extracted using HSPICE circuit simulator. This method is convenient and accurate so that circuit design applications can be easily manipulated.

A Novel Soft Switched Auxiliary Resonant Circuit of a PFC ZVT-PWM Boost Converter for an Integrated Multi-chips Power Module Fabrication (PFC ZVT-PWM 승압형 컨버터에서 통합형 멀티칩 전력 모듈 제조를 위한 개선된 소프트 스위치 보조 공진 회로)

  • Kim, Yong-Wook;Kim, Rae-Young;Soh, Jae-Hwan;Choi, Ki-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.458-465
    • /
    • 2013
  • This paper proposes a novel soft-switched auxiliary resonant circuit to provide a Zero-Voltage-Transition at turn-on for a conventional PWM boost converter in a PFC application. The proposed auxiliary circuit enables a main switch of the boost converter to turn on under a zero voltage switching condition and simultaneously achieves both soft-switched turn-on and turn-off. Moreover, for the purpose of an intelligent multi-chip power module fabrication, the proposed circuit is designed to satisfy several design constraints including space saving, low cost, and easy fabrication. As a result, the circuit is easily realized by a low rated MOSFET and a small inductor. Detail operation and the circuit waveform are theoretically explained and then simulation and experimental results are provided based on a 1.8 kW prototype PFC converter in order to verify the effectiveness of the proposed circuit.

A Study on the Possibility of Electrical Fires due to the Short Circuit and Ground Fault of Power Cable Supported by an Iron Fence (철제펜스로 지지된 동력배선의 단락.지락에 의한 전기화재 발생 개연성 연구)

  • Kim, Jeong-Hun;Park, Byoung-Ki;Song, Jong-Hyeok;Jung, Ki-Chang
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.41-45
    • /
    • 2007
  • Short circuit and ground fault account for the primary causes of electrical fires. In this research, real-scale experiments were conducted to assess the possibility of electrical fires due to these causes. The experiment conditions were identical with an actual fire accident, in which the power cable was supported by an iron fence. The purposes of this research are to investigate the short circuit caused by wire cutting, the conductivity of the iron fence depending on its coating conditions, and the ground fault of one wire or two wires in an effort to reconstruct the fire accident. The test results show that, owing to the instant operation of circuit breaker in the moment of short circuit or ground fault, the generated ignition energy is far less than necessary to start an ignition. Therefore it is concluded that electrical fire is highly unlikely if the electric system is protected by a circuit breaker with normal functions.

A Test and Analysis of Instantaneous Trip Characteristics of Low Voltage 30AF Circuit Breakers (저압 30AF 차단기의 순시 Trip동작 특성시험 및 분석)

  • Kim, Ju-Chul;Lee, Sang-Joong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.364-367
    • /
    • 2009
  • The role of the low voltage circuit breakers that are installed just before the load is very important for safety. This paper presents a test and analysis of the instantaneous trip characteristics of the Low Voltage 30AF(Ampere Frame) Circuit Breakers, which can be expected to be used for improving the safety of the Low Voltage Circuit Breaker.

  • PDF

Design of a Low-cost Active Dry Electrode Module for Single Channel EEG Recording

  • Byeon Jong-Gil;Jin Kyung-Soo;Park Byoung-Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.1
    • /
    • pp.49-54
    • /
    • 2005
  • This paper presents a design of 1-channel active dry electrode module for EEG from one's forehead. The IA(instrumentation amplifier) circuit inside the module is based on the configuration sown on the paper MettingVanRijn et al. We analyze the IA circuit to find out the related equation, and then compare its simulated characteristic with the result obtained from the real active dry electrode circuit. With the active dry electrode and the wet(Ag/AgCI) electrode connected to the separated analog processing module on one's forehead at the same time, their real time and FFT outputs of EEG are examined for comparison. The active dry electrode module has advantages over the wet electrode and its analog processing module: 1) The size of the analog processing circuit of the active dry electrode module is smaller than that of existing EEG analog processing module; 2) the total cost required to make the proposed analog processing circuit is much lower than that of the existing circuit, since the designed circuit needs smaller parts; 3) the electrical characteristic is comparable to the general EEG analog processing module even if the designed module has simpler circuit configuration.

Bandgap Voltage Reference Circuit Design Technology Suitable for Driving Large OLED Display Panel (대형 OLED 디스플레이 패널 구동에 적합한 밴드갭 레퍼런스 회로 설계 및 결과)

  • Moon, Jong Il;Cho, Sang Jun;Cho, Eou Sik;Nam, Chul;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.53-56
    • /
    • 2018
  • In this paper, a CMOS bandgap voltage reference that is not sensitive to changes in the external environment is presented. Large OLED display panels need high supply voltage. MOSFET devices with high voltage are sensitive to the output voltage due to the channel length modulation effect. The self-cascode circuit was applied to the bandgap reference circuit. Simulation results show that the maximum output voltage change of the basic circuit is 77mV when the supply voltage is changed from 10.5V to 13.5V, but the proposed circuit change is improved to 0.0422mV. The improved circuit has a low temperature coefficient of $9.1ppm/^{\circ}C$ when changing the temperature from $-40^{\circ}C$ to $140^{\circ}C$. Therefore, the proposed circuit can be used as a reference voltage source for circuits that require a high supply voltage.

Design of Counter Circuit for Improving Precision in Distance Measuring System (거리 측정 시스템의 정밀도 향상을 위한 카운터 회로의 설계)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.885-890
    • /
    • 2020
  • In the distance measurement system the time-to-digital conversion circuit used measures the distance using the time interval between the start signal and the stop signal. The time interval is generally converted to digital information using a counter circuit considering the response speed. Therefore, a clock signal with a high frequency is required to improve precision, and a clock signal with a high frequency is also required to measure fine distances. In this paper, a counter circuit was designed to increase the accuracy of distance measurement while using the same frequency. The circuit design was performed using a 0.18㎛ CMOS process technology, and the operation of the designed circuit was confirmed through HSPICE simulation. As a result of the simulation, it is possible to obtain an improvement of four times the precision compared to the case of using a general counter circuit.

A Study on the Fuel Cell Equivalent Circuit Modeling (연료전지 수치해석을 이용한 등가회로 모델링 연구)

  • OH, HWANYEONG;CHOI, YOON YOUNG;SOHN, YOUNG-JUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.226-231
    • /
    • 2022
  • Power converter are usually equipped for fuel cell power generation system to connect alternating current (AC) electric power grid. When converting direct current (DC) of fuel cell power source into AC, the power converter has a frequency ripple, which affects the fuel cell and the grid. Therefore, an equivalent circuit having dynamic characteristics of fuel cell power, for example, impedance, is useful for designing an inverter circuit. In this study, the current, voltage and impedance characteristics were calculated through fuel cell modeling and validated by comparing them with experiments. The equivalent circuit element values according to the current density were formulated into equations so that it could be applied to the circuit design. It is expected that the process of the equivalent circuit modeling will be applied to the actual inverter circuit design and simulated fuel cell power sources.