• Title/Summary/Keyword: ciphertext-policy

Search Result 27, Processing Time 0.02 seconds

Sharing and Privacy in PHRs: Efficient Policy Hiding and Update Attribute-based Encryption

  • Liu, Zhenhua;Ji, Jiaqi;Yin, Fangfang;Wang, Baocang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.323-342
    • /
    • 2021
  • Personal health records (PHRs) is an electronic medical system that enables patients to acquire, manage and share their health data. Nevertheless, data confidentiality and user privacy in PHRs have not been handled completely. As a fine-grained access control over health data, ciphertext-policy attribute-based encryption (CP-ABE) has an ability to guarantee data confidentiality. However, existing CP-ABE solutions for PHRs are facing some new challenges in access control, such as policy privacy disclosure and dynamic policy update. In terms of addressing these problems, we propose a privacy protection and dynamic share system (PPADS) based on CP-ABE for PHRs, which supports full policy hiding and flexible access control. In the system, attribute information of access policy is fully hidden by attribute bloom filter. Moreover, data user produces a transforming key for the PHRs Cloud to change access policy dynamically. Furthermore, relied on security analysis, PPADS is selectively secure under standard model. Finally, the performance comparisons and simulation results demonstrate that PPADS is suitable for PHRs.

New Constructions of Hierarchical Attribute-Based Encryption for Fine-Grained Access Control in Cloud Computing

  • Zhang, Leyou;Hu, Yupu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1343-1356
    • /
    • 2013
  • Cloud computing has emerged as perhaps the hottest development in information technology at present. This new computing technology requires that the users ensure that their infrastructure is safety and that their data and applications are protected. In addition, the customer must ensure that the provider has taken the proper security measures to protect their information. In order to achieve fine-grained and flexible access control for cloud computing, a new construction of hierarchical attribute-based encryption(HABE) with Ciphertext-Policy is proposed in this paper. The proposed scheme inherits flexibility and delegation of hierarchical identity-based cryptography, and achieves scalability due to the hierarchical structure. The new scheme has constant size ciphertexts since it consists of two group elements. In addition, the security of the new construction is achieved in the standard model which avoids the potential defects in the existing works. Under the decision bilinear Diffie-Hellman exponent assumption, the proposed scheme is provable security against Chosen-plaintext Attack(CPA). Furthermore, we also show the proposed scheme can be transferred to a CCA(Chosen-ciphertext Attack) secure scheme.

Fine-Grained and Traceable Key Delegation for Ciphertext-Policy Attribute-Based Encryption

  • Du, Jiajie;HelIl, Nurmamat
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3274-3297
    • /
    • 2021
  • Permission delegation is an important research issue in access control. It allows a user to delegate some of his permissions to others to reduce his workload, or enables others to complete some tasks on his behalf when he is unavailable to do so. As an ideal solution for controlling read access on outsourced data objects on the cloud, Ciphertext-Policy Attribute-Based Encryption (CP-ABE) has attracted much attention. Some existing CP-ABE schemes handle the read permission delegation through the delegation of the user's private key to others. Still, these schemes lack the further consideration of granularity and traceability of the permission delegation. To this end, this article proposes a flexible and fine-grained CP-ABE key delegation approach that supports white-box traceability. In this approach, the key delegator first examines the relations between the data objects, read permission thereof that he intends to delegate, and the attributes associated with the access policies of these data objects. Then he chooses a minimal attribute set from his attributes according to the principle of least privilege. He constructs the delegation key with the minimal attribute set. Thus, we can achieve the shortest delegation key and minimize the time of key delegation under the premise of guaranteeing the delegator's access control requirement. The Key Generation Center (KGC) then embeds the delegatee's identity into the key to trace the route of the delegation key. Our approach prevents the delegatee from combining his existing key with the new delegation key to access unauthorized data objects. Theoretical analysis and test results show that our approach helps the KGC transfer some of its burdensome key generation tasks to regular users (delegators) to accommodate more users.

Attribute-Based Data Sharing with Flexible and Direct Revocation in Cloud Computing

  • Zhang, Yinghui;Chen, Xiaofeng;Li, Jin;Li, Hui;Li, Fenghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4028-4049
    • /
    • 2014
  • Attribute-based encryption (ABE) is a promising cryptographic primitive for implementing fine-grained data sharing in cloud computing. However, before ABE can be widely deployed in practical cloud storage systems, a challenging issue with regard to attributes and user revocation has to be addressed. To our knowledge, most of the existing ABE schemes fail to support flexible and direct revocation owing to the burdensome update of attribute secret keys and all the ciphertexts. Aiming at tackling the challenge above, we formalize the notion of ciphertext-policy ABE supporting flexible and direct revocation (FDR-CP-ABE), and present a concrete construction. The proposed scheme supports direct attribute and user revocation. To achieve this goal, we introduce an auxiliary function to determine the ciphertexts involved in revocation events, and then only update these involved ciphertexts by adopting the technique of broadcast encryption. Furthermore, our construction is proven secure in the standard model. Theoretical analysis and experimental results indicate that FDR-CP-ABE outperforms the previous revocation-related methods.

Fuzzy Keyword Search Method over Ciphertexts supporting Access Control

  • Mei, Zhuolin;Wu, Bin;Tian, Shengli;Ruan, Yonghui;Cui, Zongmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5671-5693
    • /
    • 2017
  • With the rapid development of cloud computing, more and more data owners are motivated to outsource their data to cloud for various benefits. Due to serious privacy concerns, sensitive data should be encrypted before being outsourced to the cloud. However, this results that effective data utilization becomes a very challenging task, such as keyword search over ciphertexts. Although many searchable encryption methods have been proposed, they only support exact keyword search. Thus, misspelled keywords in the query will result in wrong or no matching. Very recently, a few methods extends the search capability to fuzzy keyword search. Some of them may result in inaccurate search results. The other methods need very large indexes which inevitably lead to low search efficiency. Additionally, the above fuzzy keyword search methods do not support access control. In our paper, we propose a searchable encryption method which achieves fuzzy search and access control through algorithm design and Ciphertext-Policy Attribute-based Encryption (CP-ABE). In our method, the index is small and the search results are accurate. We present word pattern which can be used to balance the search efficiency and privacy. Finally, we conduct extensive experiments and analyze the security of the proposed method.

Accountable Attribute-based Encryption with Public Auditing and User Revocation in the Personal Health Record System

  • Zhang, Wei;Wu, Yi;Xiong, Hu;Qin, Zhiguang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.302-322
    • /
    • 2021
  • In the system of ciphertext policy attribute-based encryption (CP-ABE), only when the attributes of data user meets the access structure established by the encrypter, the data user can perform decryption operation. So CP-ABE has been widely used in personal health record system (PHR). However, the problem of key abuse consists in the CP-ABE system. The semi-trusted authority or the authorized user to access the system may disclose the key because of personal interests, resulting in illegal users accessing the system. Consequently, aiming at two kinds of existing key abuse problems: (1) semi-trusted authority redistributes keys to unauthorized users, (2) authorized users disclose keys to unauthorized users, we put forward a CP-ABE scheme that has authority accountability, user traceability and supports arbitrary monotonous access structures. Specifically, we employ an auditor to make a fair ruling on the malicious behavior of users. Besides, to solve the problem of user leaving from the system, we use an indirect revocation method based on trust tree to implement user revocation. Compared with other existing schemes, we found that our solution achieved user revocation at an acceptable time cost. In addition, our scheme is proved to be fully secure in the standard model.

Study on the New Re-identification Process of Health Information Applying ISO TS 25237 (ISO TS 25237을 적용한 보건의료정보의 새로운 재식별 처리에 관한 연구)

  • Kim, Soon Seok
    • Convergence Security Journal
    • /
    • v.19 no.5
    • /
    • pp.25-36
    • /
    • 2019
  • With the development of information and communication technology, hospitals that electronically process and manage medical information of patients are increasing. However, if medical information is processed electronically, there is still room for infringing personal information of the patient or medical staff. Accordingly, in 2017, the International Organization for Standardization (ISO) published ISO TS 25237 Health Information - Pseudonymization[1]. In this paper, we examine the re - identification process based on ISO TS 25237, the procedure and the problems of our proposed method. In addition, we propose a new processing scheme that adds a re-identification procedure to our secure differential privacy method [2] by keeping a mapping table between de-identified data sets and original data as ciphertext. The proposed method has proved to satisfy the requirements of ISO TS 25237 trust service providers except for some policy matters.