
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 1, Jan. 2021 323

Copyright ⓒ 2021 KSII

This work is supported by the National Key R&D Program of China under GrantNo.2017YFB0802000, the

National Natural Science Foundation of China under Grants No.61807026, the Natural Science Basic Research

Plan in Shaanxi Province of China under Grant No.2019JM-198, the Plan for Scientific Innovation Talent of Henan

Province under Grant No.184100510012, and in part by the Program for Science and Technology Innovation

Talents in the Universities of Henan Province under Grant No.18HASTIT022.

http://doi.org/10.3837/tiis.2021.01.018 ISSN : 1976-7277

Sharing and Privacy in PHRs: Efficient
Policy Hiding and Update Attribute-based

Encryption

Zhenhua Liu1, Jiaqi Ji1*, Fangfang Yin1, and Baocang Wang2

1 School of Mathematics and Statistics, Xidian University

Xi’an, Shaanxi, 710071, China

[e-mail: zhualiu@hotmail.com, jiaqiluck@163.com, yinff21@163.com]
2 State Key Laboratory of Integrated Services Networks, Xidian University

Xi’an, 710071, China

[e-mail: bcwang79@aliyun.com]

*Corresponding author: Jiaqi Ji

Received September 17, 2020; revised December 8, 2020; accepted January 14, 2021;

published January 31, 2021

Abstract

Personal health records (PHRs) is an electronic medical system that enables patients to acquire,

manage and share their health data. Nevertheless, data confidentiality and user privacy in

PHRs have not been handled completely. As a fine-grained access control over health data,

ciphertext-policy attribute-based encryption (CP-ABE) has an ability to guarantee data

confidentiality. However, existing CP-ABE solutions for PHRs are facing some new

challenges in access control, such as policy privacy disclosure and dynamic policy update. In

terms of addressing these problems, we propose a privacy protection and dynamic share

system (PPADS) based on CP-ABE for PHRs, which supports full policy hiding and flexible

access control. In the system, attribute information of access policy is fully hidden by attribute

bloom filter. Moreover, data user produces a transforming key for the PHRs Cloud to change

access policy dynamically. Furthermore, relied on security analysis, PPADS is selectively

secure under standard model. Finally, the performance comparisons and simulation results

demonstrate that PPADS is suitable for PHRs.

Keywords: Attribute-based Encryption, Attribute Bloom Filter, Personal Health Records,

Policy Hiding, Policy Update

mailto:zhualiu@hotmail.com
mailto:jiaqiluck@163.com

324 Liu et al.: Sharing and Privacy in PHRs: Efficient Policy Hiding and Update
Attribute-based Encryption

1. Introduction

Personal health records (PHRs) [1] is a system that allows medical staffs and patients to

retrieve PHR information in a timely way via any smart wearable devices (SWDs) [2]. As a

major fundamental service, cloud storage [3] possessing powerful computation and data

storage capabilities is very suitable for PHRs. Particularly in PHRs based on cloud storage, a

patient only needs to upload her/his electronic health records to PHRs rather than submitting

paper medical records. Whereas, PHRs still involves too much practical application concerns

that have not been addressed.

Attribute-based encryption (ABE) [4] realized fine-grained access control was classified

into CP-ABE [5] and key-policy attribute-based encryption (KP-ABE) [6]. Utilizing CP-ABE,

which can well meet the security requirements in PHRs, patients can share their encrypted

electronic health records embedded with an access policy with others. Medical staffs could

decrypt correctly while her/his attribute sets were in accord with the access policy. Generally,

a ciphertext of CP-ABE with a plaintext form of access structure involving user attribute can

be accessed by anyone. Therefore, it is not suitable for PHRs. For example, a patient needs to

consult with medical staff about medical records of a Psychiatry Department of Medical

Institution 1 or 2. The patient can encrypt medical information with an access structure

{[Department: (“Psychiatry”)] AND [Medical Institution: (“1” OR “2”)]} and upload it to

PHRs Cloud (PHRC). Under the circumstance, anyone can access the ciphertext even if she

or he can’t decrypt it, but she or he can infer that the patient might suffer from a mental illness.

Therefore, the privacy of the patient is violated and policy hiding plays a crucial role in CP-

ABE. Policy hiding can be divided into two types: full hiding and partial hiding. Attribute in

the access structure can be concealed in full hiding policy CP-ABE. But in a partial hiding

access policy, only partial attribute information is hidden. Specifically, attribute includes two

portions: attribute name and attribute value, and partial hiding simply conceals attribute value.

Note that full hiding CP-ABE has a more adequate ability to ensure attribute privacy. As

described in the previous example, located in a partial hiding scheme, an attacker can utilize

the captured ciphertext to detect that the patient was in the fixed department of the hospital to

seek medical advice, while it is impossible to acquire any information in a full hiding scheme.

To our knowledge, most of ABE schemes can encrypt message with static access policy,

but the patient’s medical record information needs to be modified at any time in PHRs.

Traditionally speaking, the patient has to decrypt an original ciphertext to obtain plaintext,

then encrypt plaintext with a new structure, and upload a new ciphertext to PHRC, which

undoubtedly increases the computation cost and communication consumption. Therefore, it is

meaningful to research on policy update that outsources a ciphertext update to PHRC.

2. Related Work

Nowadays, a growing number of people hope their health care will be protected prudently.

The connection of IoT and cloud computing with PHRs is widely used, which will generate

massive medical data. Since the data scale of medical IoT is huge, some traditional encryption

technologies are difficult to manage and process them effectively. PHRs involving IoT and

clouding computing were proposed in Xu et al. [7] and Namani et al. [8].

Nevertheless, above environment cannot refer to data confidentiality or privacy issues in

PHRs. ABE, as a primitive, gives a positive solution of data confidentiality in PHRs. Sahai

and Waters [4] introduced the ABE concept firstly. Along with the further improvement of

ABE, there exists two basic types: KP-ABE [9] and CP-ABE [10]. Furthermore, according to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 1, January 2021 325

the form of expression, access policy can be classified into the three types: AND-based [11],

tree-based [9] and LSSS-based [12]. Additionally, many other efficient and functional ABE

solutions have been put forward [13-15]. But these schemes cannot involve user privacy and

dynamic update, and thus cannot been applied directly on PHRs.

To protect user attribute privacy, a sequence of privacy protection schemes have been

presented [16, 17]. Generally, policy hiding consists of two types: partial hiding and full

hiding. The concept of partial hiding was presented by Nishide et al. [11], where the attribute

value is hidden. To improve Nishide et al.’s scheme [11], Lai et al. [18] proposed a concrete

construction supporting multi-valued attributes with wildcards. But their schemes only support

AND-gate policy. Subsequently, an improved composite-order scheme with expressive LSSS

was presented by Lai et al. [19]. Nonetheless, above schemes are limited for composite-order

groups, since the size of composite-order group is bigger than prime order that guarantees an

equivalent level of security. Later, Cui et al. [20] constructed an efficient scheme with partially

hiding access policy based on linear secret sharing scheme (LSSS) in prime-order groups.

Furthermore, attribute value is hidden by wildcards [21] and inner product encryption (IPE)

[22]. To some extent, hiding attribute value can protect privacy, but attribute name can still

reveal user information. Afterwards, Michalevsky et al. [23] utilized IPE and Khan et al. [24]

took advantage of hidden vector encryption to guarantee a stronger privacy protection, but

some shortcomings in efficiency and expressiveness were still existed. Hao et al. [25]

constructed a full hiding attribute CP-ABE, but their scheme only possessed one specific

functionality of policy hiding.

To decrease the computation burden and communication overhead, Sahai et al. [26]

presented a method utilizing ciphertext authorization to update access structure, but restricted

that a new policy was more restrained than previous structure. Later on, Yang et al. [27]

presented a variety of policy update mechanisms for various access structures, where these

structures could be converted into LSSS matrix. Then Zhang et al. [28] came up with a new

policy update method, which was proved secure based on the standard model. However, they

utilized the composite order groups. Later, Ying et al. [29] put forward a modified policy

update for PHRs, where data owner needed to generate the update component and outsourced

to PHRC. Whereas, it is possible to increase the amount of computation for data owner to

some extent. Yuan [30] showed a fresh LSS matrix update algorithm, which was a novel way

to update the policy, but had low efficiency.

2.1 Our Contributions

In this paper, we recommend PPADS to resolve both data confidentiality and user privacy in

PHRs. In PPADS, we present a solution focused on policy hiding and policy update. The

policy is fully hidden by hiding the whole attribute and the attribute is hidden by attribute

bloom filter, which plays a role for locating row number of the LSSS matrix about the attribute

and restoring the corresponding attribute mapping function. As far as policy update is

concerned, the patient generates a transforming key and uploads it to PHRC, then PHRC

updates the corresponding ciphertext with the transforming key. Our rigorous security proofs

and performance comparisons indicate that PPADS is selectively secure. Thus, as shown

below are our contributions:

⚫ In PPADS, the whole attribute in access policy can be hidden rather than attribute value,

thus the ciphertext does not disclose any user privacy information. Then the attribute can

be located and recovered by a fuzzy attribute location mechanism.

326 Liu et al.: Sharing and Privacy in PHRs: Efficient Policy Hiding and Update
Attribute-based Encryption

⚫ Furthermore, to support a flexible data sharing mechanism, the patient needs to update

an old policy to a new one. Considering three scenarios, the patient brings out a

transforming key and sends it to PHRC, and then PHRC can update the old corresponding

ciphertext to the new ciphertext.

⚫ Through comparing efficiency and functional diversification, the final result shows that

PPADS can achieve a stronger privacy protection and smaller computing storage.

2.2 Organization

Our paper is distributed as below. We will describe the preliminary knowledge in Section 3.

In Section, the detailed procedure of our system is proposed in Section 4. Finally, we provide

a security proof and performance analysis comparisons in Section 5 and Section 6, then make

a summary in Section 7.

3. Preliminaries

The definitions of bilinear pairing, decisional q -parallel bilinear Diffie-Hellman exponent

(BDHE) problem, linear secret sharing scheme (LSSS), and Bloom filter are given in this part.

3.1 Bilinear Pairing

Note G and
TG as two cyclic multiplicative groups with prime order p , and g can be

regarded as a generator of G . A bilinear pairing is a map [12] :  →G G GTe , which

satisfies the following characters:

1) Bilinearity: , Gu v , and
*, px y Z , (,) (,)=x y xye u v e u v holds.

2) Non-degeneracy: (,) 1e g g .

3) Computability: On the basis of , Gu v , there has an ability to calculate (,)e u v .

3.2 Decisional q -BDHE Assumption

The decisional q -parallel BDHE problem is described as below. Given a group G with prime

order p , where g is a generator of G . Furthermore, if an adversary 𝒜 is put

y⃗= {g,gs,ga,⋯,gaq
,gaq+2

,⋯,ga2q
}, where

*, pa s Z , the value
1

(,)
+

G
qa s

Te g g and a random

element GTZ need to be distinguished. An adversary 𝒜 has advantage  in attacking

decisional q -BDHE [12] while

 |Pr [𝒜 (y⃗⃗,e(g,g)aq+1s) = 0] − Pr[𝒜(y⃗⃗,Z) = 0]| ≥ 𝜀 (1)

Definition 1. The decisional q -BDHE hardness assumption holds, while no polynomial time

adversary 𝒜 has a non-negligible advantage in resolving the decisional q -BDHE problem.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 1, January 2021 327

3.3 Linear Secret Sharing Scheme

A linear secret sharing scheme [12] is applied to a structure by (,)M  , where M is an access

matrix with the size of l n and  is an injective function which maps each row of M to an

attribute. Specifically, there are two algorithms:

⚫ Share ((,),)M S : The subalgorithm is applied to distribute a secret value ps Z to

attributes. Given a vector v⃗=(s,z2,⋯,zn)T, where 𝑠 is the secret value and r2,⋯,rn∈Zp are

selected at random, set
iM as i -th row of M and calculate λi=Mi∙v⃗, which is one of l

sharing values of the secret s .

⚫ Reconstruction

((𝜆1, ⋯ , 𝜆𝑙), (𝑀, 𝜌)): The subalgorithm is utilized to recover the secret

value s according to (λ1,⋯, λl) . For any authorized attribute set S , define

{ | () }I i i S=   {1,2, ⋯ , 𝑙} . A serious of coefficients { | }i pZ i I  will satisfy

i i

i I

M


 = (1,0, ⋯ ,0). Therefore,


= i i

i I

s   can be reconstructed.

3.4 Bloom Filter

In 1970, Bloom [31] presented the concept of Bloom filter that is a sort of data structure for

permitting membership querying and can be applied to make a judgment about whether a value

belongs to a collection. Conveniently,
ABF denotes a Bloom filter encoding for a set A .

Subsequently, in 2013, Dong et al. [32] proposed the garbled Bloom filter by introducing the

XOR operation. Similarly, to add an element x A to the filter, x is divided into k shares

utilizing the XOR -based secret sharing scheme, which are set on the locations []{ ()}i i kh x .

To inquire x , the relevant values in these positions are executed by the XOR operation. If the

value recovered from the above values is equal to x , then x A , otherwise x A .
Furthermore, garbled Bloom filter is employed as a block to build attribute Bloom filter

(ABF) parameterized by (, , , ,)m l k H  . Specifically, l represents the number of inserted

attributes, []{ } = j j kH h are k independent hash functions, and  denotes the added value’s bit

Fig. 1. Example for Inserting Values to ABF

328 Liu et al.: Sharing and Privacy in PHRs: Efficient Policy Hiding and Update
Attribute-based Encryption

length. To insert an element ()i to the filter, = +i iv l i is calculated, where
i is a random

value. At the moment, iv is divided into k  -bit shares []{ }
j

i j kv  utilizing the XOR -based

secret sharing scheme, which are presented (())= jpos h i located on the corresponding

positions. There exists one situation that some values position (())= jpos h i is taken up by

an existed value. As shown in Fig. 1, the existing value will be reused, which sets
1 2
2 1=v v . In

addition, the k shares of iv are calculated. Choose 1−k random numbers vi
1,vi

2,⋯,vi
k-1 with 

bits and calculate vi
k=vi

1⨁vi
2⨁⋯⨁vi

k-1⨁vi . Specifically, Algorithm 1 shows the detailed

process of ABFBuild .

3.5 Formal Definition

Fig. 2 shows the personal health record system structure, containing following participants:

PHRs Authority (PHRA), PHRs Cloud (PHRC), Data Owner (DO), and Data User (DU).

⚫ Setup (,) (,)→U PP MSK : This step is executed by PHRA. Put a secure param  and

an attribute universe U into the algorithm. PHRA generates public parameters PP and

a master secret key MSK .

⚫ KeyGen (, ,)→ SPP MSK S SK : This step is operated by PHRA. Put PP , MSK , and

attribute set S , and PHRA generates relative attribute private key
SSK .

⚫ Encrypt (, ,(,))→PP m M CT : DO performs the step. Put PP , a message m and a

policy (,)M  , then DO generates a ciphertext CT .

⚫ Decrypt (,) /→ ⊥SCT SK m : DU performs the step. Taking ciphertext CT and

corresponding secret key
SSK as input, then DU recovers m while user attribute set

satisfy structure located in the Encrypt algorithm. Otherwise, the algorithm outputs ⊥ .

⚫ PolUpdate (, (),(,),(,))  → mPP EnInfo m M M TK  : This step is managed by DO.

Taking as input PP , encryption information ()EnInfo m derived from a part of

Fig. 2. Architecture of the Privacy-Aware and Data Sharing PHRs

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 1, January 2021 329

generated ciphertext, an old policy (,)M  and a new policy (,) M  , then DO outputs

a transforming key
mTK .

⚫ CTUpdate (,) →mCT TK CT : This step is carried out by PHRC. Put the ciphertext CT

and the transforming key
mTK into the algorithm, and PHRC calculates an update

ciphertext CT .

3.6 IND-CPA Security Model

To ensure the security of PPADS, our security model will be built on Sahai and Waters’s

model [4]. The concrete selective security model is built on an interactive game between a

simulator ℬ and an adversary 𝒜. In addition, the ciphertexts before and after updating are

indistinguishable, then we merely consider the security before policy update.

1) Initialization: 𝒜 specifies an access structure 𝔸∗ * *(,)M=  , where M represents an

 l n access matrix and
 is a mapping function which maps each row of matrix to an

attribute, then transmits it to ℬ.

2) Setup: ℬ executes the algorithm after obtaining 𝔸∗, and then returns PP to 𝒜.

3) Phase 1: 𝒜 queries the attribute secret key connected to S .

Case 1: If attribute set satisfies
* *(,)M  , then abort.

Case 2: ℬ produces a private key related to S for 𝒜.

4) Challenge: 𝒜 picks two messages
0 1,m m of equal length and sends them to ℬ. Then ℬ

randomly chooses a bit {0,1} , executes Encryption algorithm to produce a

challenging ciphertext CT and returns it to 𝒜.

5) Phase 2: Phase 2 is identical to Phase 1.

6) Guess: 𝒜 returns a guess  of  . Define the advantage of 𝒜 in the security game as:

1
| Pr[] |

2
= = −AAdv   .

Definition 2. If a polynomial-time adversary has a negligible advantage in an interactive

game, PPADS is IND-CPA secure under the framework of the selective access structure

attacks.

4. Design Details of PPADS

Enlightened by Hao et al.’s scheme [25] and Li et al.’s scheme [33], PPADS is described as

shown below.

⚫ Setup. PHRA first carries out the Setup algorithm by taking as input  and

U={att1,⋯,att|U|} . The algorithm randomly selects , pZ  , λ1
'
,⋯,λl

'
pZ served as

attribute masks and group elements hatt1
,⋯,hatt|U|

G for all the attributes in U . The

330 Liu et al.: Sharing and Privacy in PHRs: Efficient Policy Hiding and Update
Attribute-based Encryption

public parameter PP is issued as 1(,) , , , ,PP e g g g g =     ⋯ , ,l
1
,atth ⋯ ,

Uatth  . The

master secret key =MSK g
 is held by PHRA.

⚫ KeyGen. When DU joins the system, she or he should register and authenticate to PHRA

to obtain the related secret key. Along with these attributes S , PHRA generates a

corresponding secret key. Select a value pt Z randomly and calculate

, () , ,
x x

t t t
x att attD g D g g att S D h = =    = 

. Then, a secret key , ,= SSK D D

{ }  
x xatt att SD is distributed to DU through a safe channel.

⚫ Encrypt. Put PP , m and (,)M  into the algorithm, and DO produces a ciphertext

CT and then uploads it to PHRC. In order to hide policy, the generated ciphertext is

different from the common ciphertext in basic CP-ABE such as [14]. Specifically, the

Encrypt phase of PPADS contains two steps: CTGen and ABFBuild . The CTGen step

generates common ciphertext and the ABFBuild step assists DU to determine their

attribute positions on the access matrix M . It is crucial for the second step that the

attribute mapping function  can be recovered according to attribute bloom filter.

1) Step 1.
0(, ,(,))→CTGen PP m M CT . The step is regarded as a normal encryption

algorithm. According to a LSSS, DO selects a vector z⃗=(s,z2,⋯,zn), where s is a secret

value and z2,⋯,zn∈Zp are chosen randomly, calculates
i iM=  z⃗ for each []i l , and

picks random values r1, ⋯ , rl ∈ Zp . Then DO produces the corresponding ciphertext

0CT as below.

0 0(,) , ,=  =  =s sCT C m e g g C g ()

,1 () ,2 ,3 []{ , , } , − −

= = = i i i i ir r

i i i i i lC g h C g C g
   



where ,3iC will be used to update ciphertext in the CTUpdate algorithm. That is to say,

the difference between the generated ciphertext and the common ciphertext in CP-ABE

is the component ,3iC .

2) Step 2. ((,))→ABFBuild M T . The step calls Algorithm 1 to generate T that hides 

.

At last, DO uploads ciphertext
0CT and (,)M T , instead of (,)M  , that is

0 , ,=  CT CT M T , to PHRC.

⚫ Decrypt. DU receives the ciphertext
0 , ,=  CT CT M T , she or he can decrypt

successfully while her or his attribute sets meet specified access policy contained in the

ciphertext. The Decrypt algorithm in PPADS includes three steps:

,ABFQuery MapRecover and DecTest . The ABFQuery algorithm aims at inquiring

for the row value in terms of each user attribute, the MapRecover algorithm is designed

to restore the mapping functions corresponding to the row number and then the DecTest

step is to test that the decryption can pass or not.

1) Step 1. (,)→ABFQuery S T .

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 1, January 2021 331

The step is executed by calling Algorithm 2. Put the attribute set S and the Attribute

Bloom filter T into Algorithm 2, then outputs a mapping function : →S J . In terms of

each attribute xatt S , relevant value = +x xr l x is inserted. In light of the algorithm,

calculate k locations []{ ()} j x j kh att , and get the corresponding value []{ [()]} =j
x j j kr T h x

. Therefore, there exists rx=rx
1⨁rx

2⨁⋯⨁rx
k . Furthermore, the row number of the inserted

attribute
xatt can be represented as modx xrownum r l= = (rx

1⨁rx
2⨁⋯⨁rx

k)modl. Hence,

the row numbers will be generated and then perform the following algorithm.

Remarks. Notice that the returned row numbers are valid while user attributes are lying

in the structure, and other row numbers of the rest of attributes are merely random values.

Besides, it is worth noting that quite other attributes maybe regain an identical row

number. In this case, it is generally impacted by the quantity of attributes belonged to 𝑆

and the size of access structure.

2) Step 2. () →MapRecover P .

The step is executed by Algorithm 3. Put  into the algorithm, and outputs a set P

filled with i by choosing all the attributes in S . As shown in Algorithm 3, in terms of

each row number, the algorithm selects all attributes in J to form an attribute set

iS while satisfying the properties of injective functions i ji j S S   . Later, the set P

is composed by all , []i i l . After then, for each i P and relative secret key

i
SS

SK SK , the following algorithm can be performed.

3) Step 3. 0(,(,),) /
i

J i S
DecTest CT M SK m→ ⊥ .

This step is a normal decryption algorithm. The algorithm extracts an attribute set I

derived from
JM , which { | () }I i i S=   {1,⋯,l},

JM represents the specific matrix

formed by the row number attached to J and computes the coefficients { }i p i IZ  such

that i i

i I

w M


 = (1,0,⋯,0) and


 = i i

i I

s  . Then for each i I , the algorithm

calculates the above formula. If
iS cannot be accordant to (,)J iM  , then output ⊥ .

0

2, 1, 3,

(,) 1

((,) (,)) (,)

(,) (,)
(,)

(,)

(,)

(,)

i i

i

i i

w

i i i

i I i I

s ts
s

tw

i I

s

s

e C D
B

e C D e C D e C D

e g g e g g
e g g

e g g

C m e g g
m

B e g g

 



= 
 


= =


= =

 







 


 





 (2)

332 Liu et al.: Sharing and Privacy in PHRs: Efficient Policy Hiding and Update
Attribute-based Encryption

⚫ PolUpdate. DO performs the policy update and generates a transforming key, which is

used to update ciphertext for PHRC. Set the old structure (,)M  , the updating or new

Algorithm 1: ABFBuild

Input:

1.

2. =new -element array of -bit strings

3. for to do

4. //initialized

5. end for

6. for to do

7. Select a random number , such that

8. EmptyPos=0, FinalShare=

9. for to do

10.

//get the position index

11. if then

12. if EmptyPos==0 then

13. EmptyPos=pos

 //store the position

14. Else

Select a random number from

15.

16.

17. else

18.

19. end for

20.

 //reserve
21. end for

22. for to do

23. if then

24. Select a random number from

25.

26. end for

Output:

Algorithm 2: ABFQuery

Input:

1.

 2. for do

3.

4. for to do

5. //get the index

6.

7. end for
8.

9. if then

10.

11. if then

12. add into //randomized

13. end if

14. Add into

15. end for

Output:

Algorithm 3: MapRecover

Input:

1.

 2. for each do

3.

4.

5. end for

6. for to do

7.

8. for each do

9.

10.

11.

12.

13. Add to

14. Add into

15. end for

16. Add into
17. end for //compose an attribute set

Output:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 1, January 2021 333

structure (,) M  and encrypted information ()EnInfo m , which is defined as ,3iC .

Define (),i Mnum as the quantity of attribute ()i in M and (), i Mnum as the quantity of

attribute ()i in M , respectively. Concretely, update algorithm is classified as two steps.

1) Step 1. This step is used to pick the secret value s and ()EnInfo m and attribute mask

i ' . Policy update would be classified into three cases according to the distribution of

attribute location:

Case 1: Let Ι1,M' be a set of attributes which existed in an original structure if

(), (), i M i Mnum num  .

Case 2: Let Ι2,M' be a set of attributes which existed in an original structure and

appear more than once only if (), (), i M i Mnum num  .

Case 3: Let Ι3,M' be a set of attributes which did not exist in an original structure.

2) Step 2. This step is used to generate a transforming key. Specifically, on the basis of the

new access structure (,) M  , the patient generates the random vector z⃗'=(s,z2
' ,⋯,zn

')

pZ with the secret value s . Compute j j 'M=  z⃗' , where 'jM is j -th of M ' .

Attribute parameter
i and mask

i ' are reserved by the original encryption. On account

of the above three cases, the transforming key can be regarded as:

Case 1: If (,)j i  Ι1,M', select random number
j p' Z , generate the transforming key

as:

1 2 − −

= = j i j j() ()() ()
j ,i ,m j ,i ,m j ,i

'

,

' '

mTK (TK ,TK) (g ,g).
     

Case 2: If (,)j i Ι2,M', select
j j p,a' Z , compute the transforming key as:

1 2 3 − −
= = j j i j j(a) ()() () ()

j ,i ,m j ,i ,m j ,i ,m j ,i ,m

' '

j

'
TK (TK ,TK ,TK) (a ,g ,g).

     

Case 3: If (,)j i  Ι3,M', select random number
j p' Z , generate the transforming key

as:
1 2 3 − −

= = j j j j jr r ()() () ()
j ,i ,m j ,i ,m j ,i ,m j ,i ,m (i)

' '
TK (TK ,TK ,TK) (g h ,g ,g).

   


At last, the transforming key

mTK is described as:

1, 2, 3,, , (,) , , (,) , , (,)(1,{ }),(2,{ }),(3,{ }) .
M M Mm j i m j i I j i m j i I j i m j i ITK Case TK Case TK Case TK
    =  

⚫ CTUpdate. After receiving the transforming key, PHRC will generate a new ciphertext.

Then a final ciphertext is composed of the new ciphertext and an updated attribute bloom

filter. Therefore, there exist two steps as follows.

1) Step 1. (,) →mCTUpdate CT TK CT . The update ciphertext algorithm inputs the

transforming key
mTK and the old ciphertext CT , and then outputs an update ciphertext

CT according to the following three cases.

a. If Ι1,M' in Case 1 holds, the updated ciphertext
jC ' is described as:

1 2
1 1 2 2 3

− −
= =  =  = = = =j j j j j' r r ()() ()

j j , i , j ,i ,m (i) j , i , j , j ,i ,m

'
C (C C TK g h ,C C g ,C T' ' ' ' K g).

   



In this formula, j ir r= is consistent with the original ciphertext.

334 Liu et al.: Sharing and Privacy in PHRs: Efficient Policy Hiding and Update
Attribute-based Encryption

b. If (,)j i  Ι2,M' in Case 2 holds, the updated ciphertext
jC ' is described as:

2 3
1 1 2 2 3

− −
= =  =  = = = =j j j j j j ja r a r ()() ()

j j , i , j ,i ,m (i) j , i , j , j ,i ,

'

m

'
C (C C TK g h ,' ' ' 'C C g ,C TK g),

   



where =j j ir a r .

c. If (,)j i  Ι3,M' in Case 3 holds, the
jC ' is described as:

1 2 3
1 2 3

− −
= = =  = = = =j j j j jr r ()() () ()

j j , j ,i ,m (i) j , j ,i ,m j , j

'

,i ,m

'
C (C TK g h ,C T' ' ' K g ,C TK' g).

   



2) Step 2. (,)  →UpdateABFBulid M T . The ABFBulid algorithm is run again. The

algorithm inputs the new policy, then outputs a new attribute bloom filter. Since DO has

a new access policy, we can run the ABFBulid algorithm to get a new T as a part of

the update ciphertext.

In conclusion, the final ciphertext could be regarded as
0

  = 'CT (CT ,M ,T),
where

0CT ' is

defined as 0 0 = j j [l']CT (C,C ,{ }'C') .

5. Security Analysis

5.1 Analysis of Ciphertext Indistinguishability

Theorem 1. Assume q -parallel BDHE assumption holds in groups (), TG G , then PPADS is

IND-CPA secure under the framework of the selective access policy attacks in the standard

model.

Proof: Supposing that an attacker 𝒜 could breach our system in a polynomial time with non-

negligible advantage of  in CPA security game, then a challenger ℬ would have an advantage

of
2


to resolve the difficult problem.

Pick , ps Z randomly, the decisional q - parallel BDHE problem used in PPADS is defined

as: y⃗= (g,gs,gβ,⋯, gβ
q

,gβ
q+2

,⋯,gβ
2q

)

and Z . Later on, given a coin flip u , if 1=u , then

1

(,)
+

=
q sZ e g g 

; Or else, Z is selected from
TG randomly. Then ℬ is given a guess value.

Initialization. 𝒜 chooses the challenging policy (,) M  and transmits it to ℬ.

Setup. ℬ simulates PP as below:

⚫ Pick a random number pZ and figure up (,) (,) (,)


= 
q

e g g e g g e g g   
, denoted

1+= + q   .

⚫ Select pZ randomly, then compute g
.

⚫  x U , put a corresponding number xz randomly, then calculate
xh :

1) While
 maps an index i∈{1,2,⋯,l

*}

to an element x , put

2

,1 ,2() ()i ix
M Mz

xh g g g
 

=  
⋯ ,()

n
i nM

g
 

 . (3)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 1, January 2021 335

2) Otherwise, put = xz

xh g .

Phase 1. In the phase, 𝒜 can obtain a group of secret keys except that attribute S that satisfy

access matrix M . ℬ picks a value  pr Z randomly and vector 𝑤⃗⃗⃗ = (w1,w2,⋯,wn*) n
pZ




with the first element 1 1w = − . Put w⃗⃗⃗ 0iM  = , , () i i S . From the property of a LSSS,

there consequentially exists such a vector. Then the simulator ℬ implicitly defines t as

(denoted N'={2,⋯,n*}):

1 1

1 2





− − +
= + + +

q q q n

n
t r       (4)

Generate , ,
xattD D D as follows:

1 1
2

1 2
() ,

− − +
+ −

+ + +



= =
q q q n

q i
i n

r w w wwr

i N

D g g g D g
    

 (5)

While there not exists an index {1,2, , }i l mapped to x , put ()= x

x

z

attD D . Otherwise,

put (denoted N={1,⋯,n*})

,

1()

,

() ()



+ + −

  

 
=   

 
 

 
i j

q j k
jx k

x

M

rz

att

j N k N k j

D D g g
 

 (6)

Challenge. 𝒜 returns two plaintexts 0m and 1m . Then ℬ opts for a random value {0,1}=

and calculates = 
'sC m Z e(g ,g)

 and 0 =
sC g . Next, ℬ picks y

2
',⋯,y

n
' randomly and

forms the vector v ⃗⃗⃗: v⃗
2

2 3 ,'(s,s y ,s y ' = + + ⋯ 1n n
pn

,s y) Z'




−
+  . Furthermore, ℬ selects

some randomized numbers r1
',⋯,rl

'
pZ . The challenge ciphertext is produced:

 1

− 



=   
j

(i) (i) i i , j i i
z z r M' 'rs

i ,

j N

''
C (g) g (g) g  

 (7)

 2

−
=  irs

,

'

iC g g ,
3


−



=  j i , j i '

,

'y M

i

j N

C (g) g
 (8)

Set 1 2i i i i , i ,r s r , sM s' M'   = − = + +⋯
1n

i ,n is M ,i'' − + +  {1,2,⋯,l
*}.

Phase 2. Phase 2 is identical to Phase 1.

Guess. 𝒜 outputs a guess  . While =  , ℬ returns 1 to suggest that
1

(,)
+

=
qa sZ e g g . Or

else, ℬ gets back 0 that signifies Z is a random element. From the above interactive game, it

is visible that the simulation of key queries and ciphertext performance was identical to the

real system.

336 Liu et al.: Sharing and Privacy in PHRs: Efficient Policy Hiding and Update
Attribute-based Encryption

1) If 0=u , GTZ , 𝒜 is winner possessing the probability
1

[| u 0]
2

Pr   = = = .

Then ℬ outputs 0 =u while    and
1

[u u | u 0]
2

Pr  = = = .

2) If 1=u , ℬ successfully simulated the challenge ciphertext. Suppose 𝒜 break the system

with the advantage of , ℬoutputs 1 =u while  =  and uP
1

[u u |
2

r 1]  = = = + .

In a word, the advantage of ℬ can be described as:

1
Adv [u u | u 0] [u 0] [u u | u 1] [u 1]

2

1 1 1 1 1 1
()

2 2 2

Pr Pr r

2

P r

2 2

P

 

 = = =  = + = =  = −

=  +  + − =

B

Hence, we proved that PPADS is IND-CPA secure under the (decisional) q -parallel BDHE

assumption.

5.2 Security Comparison

Security level. Table 1 presents intuitional function comparisons. However, PPADS and Hao

et al.’s scheme [25] can provide a stronger privacy protection. In particular, the disclosure of

access structure can lead to the theft of privacy information, since access structure existed in

the form of plaintext. However, the full policy hiding mentioned in PPADS cannot obtain any

sensitive information through access policy, which can guarantee higher security. In addition,

Theorem 1 indicates that PPADS is selectively secure. Dynamic update can be realized in

PPADS and [29, 33]. Specifically, the difference is that their schemes adopted different update

classification ways. However, all of them only implemented single functionality. Based on the

above comparisons, PPADS possesses more powerful functionalities.

Table 1. Functionality Comparisons

Schemes
Policy

update

Partial policy

hiding

Full policy

hiding
Security

Expressiveness

of policy

[11] × √ × selective AND-gates

[19] × √ × full LSSS

[25] × × √ selective LSSS

[29] √ × × selective LSSS

[33] √ × × selective LSSS

Ours √ × √ selective LSSS

Privacy protection and policy update. In PPADS, attribute can be hidden by concealing the

attribute mapping function  . Data users are allowed to query the corresponding mapping

function for their owned attributes. However, users who can pass decryption test are authorized

medical staffs. Later on, the ABFQuery oracle returns a random value to 𝒜. Consequently,

ABFQuery algorithm cannot reveal any user privacy. Furthermore, transforming key queries

file:///D:/Download/Dict/8.9.3.0/resultui/html/index.html#/javascript:;
file:///D:/Download/Dict/8.9.3.0/resultui/html/index.html#/javascript:;

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 1, January 2021 337

still can not improve the advantage of the adversary. Assume that (,)i iM  
 and (,)j jM  

are old and new access structure, respectively. Then considering the transforming key queries

0(, ,)i iTK m M  
and 1(, ,)j jTK m M  

, the transforming key oracle returns the same

transforming key while the adversary 𝒜 can not distinguish the encryption between 0m and

1m . Thus, PPADS is secure to protect the policy privacy.

6. Performance Analysis

In the section, we contrast our system with other corresponding works [11, 19, 25, 29, 33].

Table 2 displays the specific symbol notations. We further give the storage cost as shown in

Table 3. Note that an element length in each group , TG G is set to 512 bits. From Table 3, due

to the characteristic of bloom filter, the size of ciphertext in PPADS is smaller contrasted with

Lai et al.’s scheme [19]. Furthermore, since the classification of updating ciphertext is different

from Ying et al.’s scheme [29], the size of transforming key and update ciphertext in PPADS

is shorter. Table 4 shows the time complexity comparisons of each algorithm among these

schemes. Since the time complexity of updating ciphertext is almost the same, we only

compare the computation time of updating transforming key.

Table 2. Notations

Notations Terms

U The number of attributes in the system attribute universe

S The number of attributes in the user attribute set

lL The bit-length of the value l

G The bit-length of element in G

GT The bit-length of element in GT

ZP The bit-length of element in ZP

h The bit-length of hash function

t The number of the hash functions

k The number of the update attributes

m The size of the Attribute Bloom Filter

l The number of attributes in the access policy

Table 3. Comparisons of Storage Overhead

Schemes [11] [19] [25] [29] [33] Ours

PP
(3)+ GU

+ GT

(4)+ GU

+ GT

(2)+ GU

+ GT

(2)+ GU

+ GT h

(2)+ GU

+ GT

(2)+ GU

+ +G ZT Pl

MSK (2)+ ZPU +G ZPU G G G G

338 Liu et al.: Sharing and Privacy in PHRs: Efficient Policy Hiding and Update
Attribute-based Encryption

SK (1 2)+ GS (1 2)+ GS (1 2)+ GS (2)+ GS (2)+ GS (2)+ GS

CT
(1)2+ G

+ GT

(1)4+ Gl

+ 2 GT

+ (),M 

(1)+ Gl

+ GT

+
+ lM m L

+ k h

(1)2+ Gl

+ GT

+ (),M 

(1)2+ Gl

+ GT

+ (),M 

+ | |Pl Z

(1)3+ Gl

+ GT

+ + lM m L

+ k h

mTK

Type1

— — — 2 Gt

ZP 2 G

Type2 3 ZP | | 2+Z GP

Type3 2+Z GP (2)+ Gt

CT'

Type1

— — — 2 Gt 2 +G ZP (2)+ Gt) Type2

Type3

Table 4. Comparisons of Computation Cost

Schemes [11] [19] [25] [29] [33] Ours

Encryption

Decryption

Up-

date

Type1 — — —

Type2 — — —

Type3 — — —

We can draw an intuitive efficiency comparison graph based on Table 4, where M, E, P,

and H denote a multiplication operation, an exponent operation, pairing operation, and hash

operation, respectively. To evaluate the feasibility of PPADS for PHR system, some necessary

experiments are conducted to measure time operation. These experiments are carried out by a

laptop with an Intel configuration, CPU, TM i5-7500@3.40GHz, and 4GB RAM. We detect

the efficiency of PPADS on the basis of Pairing-based Cryptography (PBC) library [34]. Since

the encryption and decryption time are concerned factors to assess the efficiency of the system,

we make a comparison of the computational time between PPADS and Lai et al.’s scheme

[19]. Fig. 3 and Fig. 4 illustrate the comparison of encryption time and decryption time for

policy hiding, respectively. Though the encryption and decryption time of both our system and

Lai et al.’s scheme [19] increase along with the number of attributes, PPADS is more efficient

since fewer pair operations are required.

()+ +2l l 2 E

+M

()+6l 1 M

()+ +6l 4 E

()+ +l 1 M tH

()+ +2l 1 E

()+ +l 1 M tH

()+ +3l 2 E

()2l+1 M+tH

()+ +3l 2 E

()+ +l 1 M tH

()+ +4L 2 E

 2M
()+ 2l+1 P

 +2M lE

()+ +2l 1 P

 +2M 2lE

()+ +2l+1 P tH

 2M+lE

()+ + +2l 1 P tH

 +2M tH

()+ +l 1 E

()+ +2l 2 P

 +2M 2tE

()+ + +2l 2 P tH

+ +M 3E tH +M E +2M 2E

+ +M 3E tH +3M 2E +3M 2E

+ +M 3E tH + +2M 3E tH + +2M 4E tH

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 1, January 2021 339

In addition, focusing on policy update, Fig. 5 elaborates the concrete computational time

between PPADS and Ying et al.’s scheme [29]. In [29], since the time complexity of each type

for transforming key is the same, we present only a curve comparison analysis. Table 4

presents the time complexity of Type 1 and Type 2 for transforming key do not increase along

with the number of attributes in PPADS, while only Type 3 in PPADS and all types in Ying

et al.’s scheme [29] require them. Generally, PPADS can achieve higher efficiency than Ying

et al.’s scheme [29].

In summary, PPADS has the advantage of supporting expressive access structure, full

policy hiding, and flexible policy update over the existing schemes. Therefore, PPADS is more

applicable for data confidentiality and user privacy in PHRs. As depicted that the experimental

results are coincident with the theory analysis, thus PPADS is feasible.

7. Conclusions

In this paper, we have feasibly addressed data confidentiality and user privacy in PHRs by

recommending PPADS, which helps patients to attain medical assistance conveniently. The

core building block of PPADS is a basic CP-ABE scheme that realizes full policy hiding and

dynamic update simultaneously. In PPADS, the whole attribute can be hidden by an attribute

bloom filter and the ciphertext can be updated by PHRC with a transforming key. Moreover,

the system provides a specific security proof under decisional q -BDHE assumption.

Theoretical analysis and extensive experiment result demonstrate that PPADS has the

advantage over other schemes. However, PPADS can only support small universe. Thus, our

future work will pay more attention to how to set up a system with large universe effectively.

Fig. 3. Encryption Time for Policy Hiding Fig. 4. Decryption Time for Policy Hiding

Fig. 5. Computation Time of

340 Liu et al.: Sharing and Privacy in PHRs: Efficient Policy Hiding and Update
Attribute-based Encryption

Furthermore, the proposed system from bilinear pairing cannot resist quantum computation,

and thus post-quantum secure PPADS over lattice is on the list of things worth studying.

References

[1] M. L. Braunstein, “Health care in the age of interoperability part 5: the personal health record,”

IEEE Pulse, vol. 10, no. 3, pp. 19-23, May 2019. Article (CrossRef Link)

[2] J. Li, N. Zhang, J. Ni, J. Chen, and R. Du, “Secure and lightweight authentication with key

agreement for smart wearable systems,” IEEE Internet Things Jouranl, vol. 7, no. 8, pp. 7334-

7344, 2020. Article (CrossRef Link)

[3] S. Namani and B. Gonen, “Smart agriculture based on IoT and cloud computing,” in Proc. of the

3rd International Conference on Information and Computer Technologies, pp. 553-556, Mar. 2020.

Article (CrossRef Link)

[4] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Proc. of Annual International

Conference on the Theory and Applications of Cryptographic Techniques, pp. 457-473, 2005.

Article (CrossRef Link)

[5] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryption,” in Proc.

of IEEE Symposium on Security and Privacy, pp. 321-334, May 2007. Article (CrossRef Link)

[6] R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-based encryption with non-monotonic access

structures,” in Proc. of the 14th ACM Conference on Computer and Communications Security, pp.

195-203, Oct. 2007. Article (CrossRef Link)

[7] B. Xu, L. D. Xu, H. Cai, C. Xie, J. Hu, and F. Bu, “Ubiquitous data accessing method in IoT-based

information system for emergency medical services,” IEEE Transactions Industrial Informatics,

vol. 10, no. 2, pp. 1578-1586, Feb. 2014. Article (CrossRef Link)

[8] S. Namani and B. Gonen, “Smart agriculture based on IoT and cloud computing,” in Proc. of the

3rd International Conference on Information and Computer Technologies, pp. 553-556, Mar. 2020.

Article (CrossRef Link)

[9] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access

control of encrypted data,” in Proc. of the 13th ACM Conference on Computer and Communications

Security, pp. 89-98, Oct. 2006. Article (CrossRef Link)

[10] L. Cheung and C. Newport, “Provably secure ciphertext policy abe,” in Proc. of the 14th ACM

Conference on Computer and Communications Security, pp. 456-465, 2007.

Article (CrossRef Link)

[11] N. Takashi, Y. Kazuki, and O. Kazuo, “Attribute-based encryption with partially hidden encryptor-

specifified access structures,” in Proc. of the 6th International Conference on Applied

Cryptography and Network Security, pp. 111-129, 2008. Article (CrossRef Link)

[12] B. Waters, “Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably

secure realization,” in Proc. of the 14th International Workshop on Public Key Cryptography, pp.

53-70, 2011. Article (CrossRef Link)

[13] Z. Liu, J. Xu, Y. Liu, and B. Wang, “Updatable ciphertext-policy attribute-based encryption

scheme with traceability and revocability,” IEEE Access, vol. 7, pp. 66832-66844, May 2019.

Article (CrossRef Link)

[14] X. Yan, X. He, J. Yu, and Y. Tang, “White-box traceable ciphertext-policy attribute-based

encryption in multi-domain environment,” IEEE Access, vol. 7, pp. 128298-128312, Sep. 2019.

Article (CrossRef Link)

[15] Y. Miao, J. Ma, X. Liu, and H. Li, “Practical attribute-based multi-keyword search scheme in

mobile crowdsourcing,” IEEE Internet Things Jouranl, vol. 5, no. 4, pp. 3008-3018, Dec. 2018.

Article (CrossRef Link)

[16] F. Ö . Ç atak and A. F. Mustacoglu, “CPP-ELM: Cryptographically Privacy-Preserving Extreme

Learning Machine for Cloud Systems,” International Journal of Computational Intelligence

Systems, vol. 11, no. 1, pp. 33-44, Jan. 2018. Article (CrossRef Link)

https://doi.org/10.1109/MPULS.2019.2911804
https://doi.org/10.1109/JIOT.2020.2984618
https://doi.org/10.1109/ICICT50521.2020.00094
https://doi.org/10.1007/11426639_27
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1145/1315245.1315270
https://doi.org/10.1109/TII.2014.2306382
https://doi.org/10.1109/ICICT50521.2020.00094
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1315245.1315302
https://doi.org/10.1007/978-3-540-68914-0_7
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1109/ACCESS.2019.2918434
https://doi.org/10.1109/ACCESS.2019.2939413
https://doi.org/10.1109/JIOT.2017.2779124
https://dx.doi.org/10.2991/ijcis.11.1.3

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 1, January 2021 341

[17] T. T. Thwin and S. Vasupongayya, “Performance Analysis of Blockchain-based Access Control

Model for Personal Health Record System with Architectural Modelling and Simulation,”

International Journal of Networked and Distributed Computing, vol. 8, no. 3, pp. 139-151, May

2020. Article (CrossRef Link)

[18] J. Lai, R. H. Deng, and Y. Li, “Fully secure ciphertext-policy hiding cp-abe,” in Proc. of the 7th

International Conference on Information Security Practice and Experience, pp. 24-39, 2011.

Article (CrossRef Link)

[19] J. Lai, Y. Li, R. H. Deng, and Y. Li, “Expressive cp-abe with partially hidden access structures,”

in Proc. of the 7th ACM Symposium on Information, Computer and Communications Security, pp.

18-19, May 2012. Article (CrossRef Link)

[20] H. Cui, R. H. Deng, G. Wu, and J. Lai, “An efficient and expressive ciphertext-policy attribute-

based encryption scheme with partially hidden access structures,” in Proc. of the 10th International

Conference on Provable Security, pp. 19-38, 2016. Article (CrossRef Link)

[21] Z. Wang, J. Han, M. Wang, Y. Shi, and H. Dong, “Public key encryption with wildcards keyword

search,” in Proc. of the 8th International Conference on Instrumentation & Measurement,

Computer, Communication and Control, pp. 538-541, Mar. 2018. Article (CrossRef Link)

[22] H. Yang, Y. Su, J. Qin, and H. Wang, “Privacy-preserving outsourced inner product computation

on encrypted database,” IEEE Transactions on Dependable and Secure Computing, 2020.

Article (CrossRef Link)

[23] Y. Michalevsky and M. Joye, “Decentralized policy-hiding attribute-based encryption with

receiver privacy,” in Proc. of European Symposium on Research in Computer Security, pp. 548-

567, Sep. 2018. Article (CrossRef Link)

[24] F. Khan, H. Li, L. Zhang, and J. Shen, “An expressive hidden access policy cp-abe,” in Proc. of

IEEE 2nd International Conference Data Science in Cyberspace, pp. 178-186, June 2017.

Article (CrossRef Link)

[25] J. Hao, C. Huang, J. Ni, H. Rong, M. Xian, and X. S. Shen, “Fine-grained data access control with

attribute-hiding policy for cloud-based iot,” Computer Networks, vol. 153, pp. 1-10, Apr. 2019.

Article (CrossRef Link)

[26] A. Sahai, H. Seyalioglu, and B. Waters, “Dynamic credentials and ciphertext delegation for

attribute-based encryption,” in Proc. of Annual Cryptology Conference on Advances in Cryptology,

vol. 7414, pp. 199-217, 2012. Article (CrossRef Link)

[27] K. Yang, X. Jia, and K. Ren, “Secure and verifiable policy update outsourcing for big data access

control in the cloud,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 12, pp.

3461-3470, Dec. 2015. Article (CrossRef Link)

[28] Y. Zhang, H. Li, J. Zhang, and J. Cui, “Adaptively secure ciphertext-policy attribute-based

encryption with dynamic policy updating,” Science China Information Sciences, vol. 59, no. 4, pp.

1-16, Apr. 2016. Article (CrossRef Link)

[29] Z. Ying, W. Jang, S. Cao, X. Liu, and J. Cui, “A lightweight cloud sharing phr system with access

policy updating,” IEEE Access, vol. 6, pp. 64 611-64 621, Oct. 2018. Article (CrossRef Link)

[30] W. Yuan, “Dynamic policy update for ciphertext-policy attribute-based encryption,” IACR

Cryptol. ePrint Arch, 2016. Article (CrossRef Link)

[31] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Communications of

the ACM, vol. 13, no. 7, pp. 422-426, July 1970. Article (CrossRef Link)

[32] C. Dong, L. Chen, and Z. Wen, “When private set intersection meets big data: an efficient and

scalable protocol,” in Proc. of 2013 ACM SIGSAC Conference on Computer & Communications

Security, pp. 789-800, Nov. 2013. Article (CrossRef Link)

[33] J. Li, S. Wang, Y. Li, H. Wang, H. Wang, H. Wang, J. Chen, and Z. You, “An efficient attribute-

based encryption scheme with policy update and file update in cloud computing,” IEEE

Transactions on Industrial Informatics, vol. 15, no. 12, pp. 6500-6509, Dec. 2019.

Article (CrossRef Link)

[34] A. De Caro and V. Iovino, “jPBC: Java pairing based cryptography,” in Proc. of 2011 IEEE

Symposium on Computers and Communications, pp. 850-855, Aug. 2011. Article (CrossRef Link)

https://dx.doi.org/10.2991/ijndc.k.200515.002
https://doi.org/10.1007/978-3-642-21031-0_3
https://doi.org/10.1145/2414456.2414465
https://doi.org/10.1007/978-3-319-47422-9_2
https://doi.org/10.1109/IMCCC.2018.00119
https://doi.org/10.1109/TDSC.2020.3001345
https://doi.org/10.1007/978-3-319-98989-1_27
https://doi.org/10.1109/DSC.2017.29
https://doi.org/10.1016/j.comnet.2019.02.008
https://doi.org/10.1007/978-3-642-32009-5_13
https://doi.org/10.1109/TPDS.2014.2380373
https://doi.org/10.1007/s11432-015-5428-1
https://doi.org/10.1109/ACCESS.2018.2877981
https://www.semanticscholar.org/paper/Dynamic-Policy-Update-for-Ciphertext-Policy-Yuan/ecd2ce4e488e851bffe202bfbd5d82ad12613b31
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1109/TII.2019.2931156
https://doi.org/10.1109/ISCC.2011.5983948

342 Liu et al.: Sharing and Privacy in PHRs: Efficient Policy Hiding and Update
Attribute-based Encryption

Zhenhua Liu received the B.S. degree from Henan Normal University in 2000, and the

M.S. and Ph.D. degrees from Xidian University, China, in 2003 and 2009, respectively. He

is currently a Professor of Xidian University, China. His current research interests include

cryptography and information security.

Jiaqi Ji received the B.S. degree from Taiyuan Normal University in 2017. She is currently

going in for the M.S. degree in mathematics with Xidian University, China. Her research

focuses on network and information security.

Fangfang Yin received the B.S. degree from Henan Normal University in 2018. She is

currently going in for the M.S. degree in mathematics with Xidian University, China. Her

research interests concentrate on cryptography and cloud security.

Baocang Wang received the B.S., the M.S. and Ph.D. degrees from Xidian University,

China, in 2001, 2004, and 2006, respectively. He is currently a Professor with the State Key

Laboratory of Integrated Services Networks of Xidian University, China. His research

focuses on post-quantum cryptography, number theoretic algorithms, and cloud security.

