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Abstract 
 
Personal health records (PHRs) is an electronic medical system that enables patients to acquire, 

manage and share their health data. Nevertheless, data confidentiality and user privacy in 

PHRs have not been handled completely. As a fine-grained access control over health data, 

ciphertext-policy attribute-based encryption (CP-ABE) has an ability to guarantee data 

confidentiality. However, existing CP-ABE solutions for PHRs are facing some new 

challenges in access control, such as policy privacy disclosure and dynamic policy update. In 

terms of addressing these problems, we propose a privacy protection and dynamic share 

system (PPADS) based on CP-ABE for PHRs, which supports full policy hiding and flexible 

access control. In the system, attribute information of access policy is fully hidden by attribute 

bloom filter. Moreover, data user produces a transforming key for the PHRs Cloud to change 

access policy dynamically. Furthermore, relied on security analysis, PPADS is selectively 

secure under standard model. Finally, the performance comparisons and simulation results 

demonstrate that PPADS is suitable for PHRs. 
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1. Introduction 

Personal health records (PHRs) [1] is a system that allows medical staffs and patients to 

retrieve PHR information in a timely way via any smart wearable devices (SWDs) [2]. As a 

major fundamental service, cloud storage [3] possessing powerful computation and data 

storage capabilities is very suitable for  PHRs. Particularly in PHRs based on cloud storage, a 

patient only needs to upload her/his electronic health records to PHRs rather than submitting 

paper medical records. Whereas, PHRs still involves too much practical application concerns 

that have not been addressed.  

Attribute-based encryption (ABE) [4] realized fine-grained access control was classified 

into CP-ABE [5] and key-policy attribute-based encryption (KP-ABE) [6]. Utilizing CP-ABE, 

which can well meet the security requirements in PHRs, patients can share their encrypted 

electronic health records embedded with an access policy with others. Medical staffs could 

decrypt correctly while her/his attribute sets were in accord with the access policy. Generally, 

a ciphertext of CP-ABE with a plaintext form of access structure involving user attribute can 

be accessed by anyone. Therefore, it is not suitable for PHRs. For example, a patient needs to 

consult with medical staff about medical records of a Psychiatry Department of Medical 

Institution 1 or 2. The patient can encrypt medical information with an access structure 

{[Department: (“Psychiatry”)] AND [Medical Institution: (“1” OR “2”)]} and upload it to 

PHRs Cloud (PHRC). Under the circumstance, anyone can access the ciphertext even if she 

or he can’t decrypt it, but she or he can infer that the patient might suffer from a mental illness. 

Therefore, the privacy of the patient is violated and policy hiding plays a crucial role in CP-

ABE. Policy hiding can be divided into two types: full hiding and partial hiding. Attribute in 

the access structure can be concealed in full hiding policy CP-ABE. But in a partial hiding 

access policy, only partial attribute information is hidden. Specifically, attribute includes two 

portions: attribute name and attribute value, and partial hiding simply conceals attribute value. 

Note that full hiding CP-ABE has a more adequate ability to ensure attribute privacy. As 

described in the previous example, located in a partial hiding scheme, an attacker can utilize 

the captured ciphertext to detect that the patient was in the fixed department of the hospital to 

seek medical advice, while it is impossible to acquire any information in a full hiding scheme. 

To our knowledge, most of ABE schemes can encrypt message with static access policy, 

but the patient’s medical record information needs to be modified at any time in PHRs.  

Traditionally speaking, the patient has to decrypt an original ciphertext to obtain plaintext, 

then encrypt plaintext with a new structure, and upload a new ciphertext to PHRC, which 

undoubtedly increases the computation cost and communication consumption. Therefore, it is 

meaningful to research on policy update that outsources a ciphertext update to PHRC. 

2. Related Work 

Nowadays, a growing number of people hope their health care will be protected prudently. 

The connection of IoT and cloud computing with PHRs is widely used, which will generate 

massive medical data. Since the data scale of medical IoT is huge, some traditional encryption 

technologies are difficult to manage and process them effectively. PHRs involving IoT and 

clouding computing were proposed in Xu et al. [7] and Namani et al. [8]. 

Nevertheless, above environment cannot refer to data confidentiality or privacy issues in 

PHRs. ABE, as a primitive, gives a positive solution of data confidentiality in PHRs. Sahai 

and Waters [4] introduced the ABE concept firstly. Along with the further improvement of 

ABE, there exists two basic types: KP-ABE [9] and CP-ABE [10]. Furthermore, according to 
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the form of expression, access policy can be classified into the three types: AND-based [11], 

tree-based [9] and LSSS-based [12]. Additionally, many other efficient and functional ABE 

solutions have been put forward [13-15]. But these schemes cannot involve user privacy and 

dynamic update, and thus cannot been applied directly on PHRs. 

To protect user attribute privacy, a sequence of privacy protection schemes have been 

presented [16, 17]. Generally, policy hiding consists of two types: partial hiding and full 

hiding. The concept of partial hiding was presented by Nishide et al. [11], where the attribute 

value is hidden. To improve Nishide et al.’s scheme [11], Lai et al. [18] proposed a concrete 

construction supporting multi-valued attributes with wildcards. But their schemes only support 

AND-gate policy. Subsequently, an improved composite-order scheme with expressive LSSS 

was presented by Lai et al. [19]. Nonetheless, above schemes are limited for composite-order 

groups, since the size of composite-order group is bigger than prime order that guarantees an 

equivalent level of security. Later, Cui et al. [20] constructed an efficient scheme with partially 

hiding access policy based on linear secret sharing scheme (LSSS) in prime-order groups. 

Furthermore, attribute value is hidden by wildcards [21] and inner product encryption (IPE) 

[22]. To some extent, hiding attribute value can protect privacy, but attribute name can still 

reveal user information. Afterwards, Michalevsky et al. [23] utilized IPE and Khan et al. [24] 

took advantage of hidden vector encryption to guarantee a stronger privacy protection, but 

some shortcomings in efficiency and expressiveness were still existed. Hao et al. [25] 

constructed a full hiding attribute CP-ABE, but their scheme only possessed one specific 

functionality of policy hiding. 

To decrease the computation burden and communication overhead, Sahai et al. [26] 

presented a method utilizing ciphertext authorization to update access structure, but restricted 

that a new policy was more restrained than previous structure. Later on, Yang et al. [27] 

presented a variety of policy update mechanisms for various access structures, where these 

structures could be converted into LSSS matrix. Then Zhang et al. [28] came up with a new 

policy update method, which was proved secure based on the standard model. However, they 

utilized the composite order groups. Later, Ying et al. [29] put forward a modified policy 

update for PHRs, where data owner needed to generate the update component and outsourced 

to PHRC. Whereas, it is possible to increase the amount of computation for data owner to 

some extent. Yuan [30] showed a fresh LSS matrix update algorithm, which was a novel way 

to update the policy, but had low efficiency. 

2.1 Our Contributions 

In this paper, we recommend PPADS to resolve both data confidentiality and user privacy in 

PHRs. In PPADS, we present a solution focused on policy hiding and policy update. The 

policy is fully hidden by hiding the whole attribute and the attribute is hidden by attribute 

bloom filter, which plays a role for locating row number of the LSSS matrix about the attribute 

and restoring the corresponding attribute mapping function. As far as policy update is 

concerned, the patient generates a transforming key and uploads it to PHRC, then PHRC 

updates the corresponding ciphertext with the transforming key. Our rigorous security proofs 

and performance comparisons indicate that PPADS is selectively secure. Thus, as shown 

below are our contributions: 

⚫ In PPADS, the whole attribute in access policy can be hidden rather than attribute value, 

thus the ciphertext does not disclose any user privacy information. Then the attribute can 

be located and recovered by a fuzzy attribute location mechanism. 
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⚫ Furthermore, to support a flexible data sharing mechanism, the patient needs to update 

an old policy to a new one. Considering three scenarios, the patient brings out a 

transforming key and sends it to PHRC, and then PHRC can update the old corresponding 

ciphertext to the new ciphertext. 

⚫ Through comparing efficiency and functional diversification, the final result shows that 

PPADS can achieve a stronger privacy protection and smaller computing storage. 

2.2 Organization 

Our paper is distributed as below. We will describe the preliminary knowledge in Section 3. 

In Section, the detailed procedure of our system is proposed in Section 4. Finally, we provide 

a security proof and performance analysis comparisons in Section 5 and Section 6, then make 

a summary in Section 7. 

3. Preliminaries 

The definitions of bilinear pairing, decisional q -parallel bilinear Diffie-Hellman exponent 

(BDHE) problem, linear secret sharing scheme (LSSS), and Bloom filter are given in this part. 

3.1 Bilinear Pairing 

Note G  and 
TG  as two cyclic multiplicative groups with prime order p , and g  can be 

regarded as a generator of G . A bilinear pairing is a map [12] :  →G G GTe , which 

satisfies the following characters: 

1) Bilinearity: , Gu v ,  and 
*, px y Z , ( , ) ( , )=x y xye u v e u v holds. 

2) Non-degeneracy: ( , ) 1e g g . 

3) Computability: On the basis of , Gu v , there has an ability to calculate ( , )e u v . 

3.2 Decisional q -BDHE Assumption 

The decisional q -parallel BDHE problem is described as below. Given a group G with prime 

order p , where g  is a generator of G . Furthermore, if an adversary  𝒜  is put 

y⃗= {g,gs,ga,⋯,gaq
,gaq+2

,⋯,ga2q
}, where 

*, pa s Z , the value 
1

( , )
+

G
qa s

Te g g  and a random 

element GTZ  need to be distinguished. An adversary 𝒜  has advantage   in attacking 

decisional q -BDHE [12] while 

 

 |Pr [𝒜 (y⃗⃗,e(g,g)aq+1s) = 0] − Pr[𝒜(y⃗⃗,Z) = 0]| ≥ 𝜀  (1) 

Definition 1.  The decisional q -BDHE hardness assumption holds, while no polynomial time 

adversary 𝒜 has a non-negligible advantage in resolving the decisional q -BDHE problem. 
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3.3 Linear Secret Sharing Scheme 

A linear secret sharing scheme [12] is applied to a structure by ( , )M  , where M  is an access 

matrix with the size of l n  and   is an injective function which maps each row of M  to an 

attribute. Specifically, there are two algorithms: 

⚫ Share (( , ), )M S : The subalgorithm is applied to distribute a secret value ps Z  to 

attributes. Given a vector v⃗=(s,z2,⋯,zn)T, where 𝑠 is the secret value and r2,⋯,rn∈Zp are 

selected at random, set 
iM  as i -th row of M  and calculate λi=Mi∙v⃗, which is one of l  

sharing values of the secret s . 

⚫ Reconstruction
 
((𝜆1, ⋯ , 𝜆𝑙), (𝑀, 𝜌)): The subalgorithm is utilized to recover the secret 

value s  according to (λ1,⋯, λl) . For any authorized attribute set S , define 

{ | ( ) }I i i S=   {1,2, ⋯ , 𝑙} . A serious of coefficients { | }i pZ i I   will satisfy 

i i

i I

M


 = (1,0, ⋯ ,0). Therefore,  


= i i

i I

s    can be reconstructed. 

3.4 Bloom Filter 

In 1970, Bloom [31] presented the concept of Bloom filter that is a sort of data structure for 

permitting membership querying and can be applied to make a judgment about whether a value 

belongs to a collection. Conveniently,  
ABF  denotes a Bloom filter encoding for a set A . 

Subsequently, in 2013, Dong et al. [32] proposed the garbled Bloom filter by introducing the 

XOR operation. Similarly, to add an element x A  to the filter, x  is divided into k  shares 

utilizing the XOR -based secret sharing scheme, which are set on the locations [ ]{ ( )}i i kh x . 

To inquire x , the relevant values in these positions are executed by the XOR  operation. If the 

value recovered from the above values is equal to x , then x A , otherwise x A . 
Furthermore, garbled Bloom filter is employed as a block to build attribute Bloom filter 

(ABF) parameterized by ( , , , , )m l k H  . Specifically,  l  represents the number of inserted 

attributes, [ ]{ } = j j kH h  are k  independent hash functions, and   denotes the added value’s bit 

Fig. 1.  Example for Inserting Values to ABF 
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length. To insert an element ( )i  to the filter,  = +i iv l i  is calculated, where 
i  is a random 

value. At the moment, iv  is divided into k  -bit shares [ ]{ }
j

i j kv   utilizing the XOR -based 

secret sharing scheme, which are presented ( ( ))= jpos h i  located on the corresponding 

positions. There exists one situation that some values position ( ( ))= jpos h i  is taken up by 

an existed value. As shown in Fig. 1, the existing value will be reused, which sets 
1 2
2 1=v v . In 

addition, the k  shares of iv  are calculated. Choose 1−k  random numbers vi
1,vi

2,⋯,vi
k-1 with   

bits and calculate vi
k=vi

1⨁vi
2⨁⋯⨁vi

k-1⨁vi . Specifically, Algorithm 1 shows the detailed 

process of ABFBuild . 

3.5 Formal Definition 

Fig. 2 shows the personal health record system structure, containing following participants: 

PHRs Authority (PHRA), PHRs Cloud (PHRC), Data Owner (DO), and Data User (DU). 

⚫ Setup ( , ) ( , )→U PP MSK : This step is executed by PHRA. Put a secure param   and 

an attribute universe U  into the algorithm. PHRA generates public parameters PP  and 

a master secret key MSK . 

⚫ KeyGen ( , , )→ SPP MSK S SK : This step is operated by PHRA. Put PP , MSK , and 

attribute set S , and PHRA generates relative attribute private key 
SSK . 

⚫ Encrypt ( , ,( , ))→PP m M CT : DO performs the step. Put PP , a message m  and a 

policy ( , )M  , then DO generates a ciphertext CT . 

⚫ Decrypt ( , ) /→ ⊥SCT SK m : DU performs the step. Taking ciphertext CT and 

corresponding secret key 
SSK  as input, then DU recovers m  while user attribute set 

satisfy structure located in the Encrypt algorithm. Otherwise, the algorithm outputs ⊥ . 

⚫ PolUpdate ( , ( ),( , ),( , ))  → mPP EnInfo m M M TK  : This step is managed by DO. 

Taking as input PP , encryption information ( )EnInfo m  derived from a part of 

Fig. 2.  Architecture of the Privacy-Aware and Data Sharing PHRs 
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generated ciphertext, an old policy ( , )M   and a new policy ( , ) M  , then DO outputs 

a transforming key
mTK . 

⚫ CTUpdate ( , ) →mCT TK CT : This step is carried out by PHRC. Put the ciphertext CT  

and the transforming key 
mTK  into the algorithm, and PHRC calculates an update 

ciphertext CT . 

3.6 IND-CPA Security Model 

To ensure the security of PPADS, our security model will be built on Sahai and Waters’s 

model [4]. The concrete selective security model is built on an interactive game between a 

simulator ℬ and an adversary 𝒜. In addition, the ciphertexts before and after updating are 

indistinguishable, then we merely consider the security before policy update. 

1) Initialization: 𝒜 specifies an access structure 𝔸∗ * *( , )M=  , where M  represents an 

 l n  access matrix and 
  is a mapping function which maps each row of matrix to an 

attribute, then transmits it to ℬ. 

2) Setup: ℬ executes the algorithm after obtaining 𝔸∗, and then returns PP  to 𝒜. 

3) Phase 1: 𝒜 queries the attribute secret key connected to S . 

Case 1: If attribute set satisfies 
* *( , )M  , then abort. 

Case 2: ℬ produces a private key related to S  for 𝒜. 

4) Challenge: 𝒜 picks two messages 
0 1,m m of equal length and sends them to ℬ. Then ℬ 

randomly chooses a bit {0,1} , executes Encryption  algorithm to produce a 

challenging ciphertext CT and returns it to 𝒜. 

5) Phase 2: Phase 2 is identical to Phase 1. 

6) Guess: 𝒜 returns a guess   of  . Define the advantage of 𝒜 in the security game as:

1
| Pr[ ] |

2
= = −AAdv   . 

Definition 2.  If a polynomial-time adversary has a negligible advantage in an interactive 

game, PPADS is IND-CPA secure under the framework of the selective access structure 

attacks. 

4. Design Details of PPADS 

Enlightened by Hao et al.’s scheme [25] and Li et al.’s scheme [33], PPADS is described as 

shown below.  

⚫ Setup. PHRA first carries out the Setup  algorithm by taking as input   and 

U={att1,⋯,att|U|} . The algorithm randomly selects , pZ  , λ1
'
,⋯,λl

'
pZ  served as 

attribute masks and group elements hatt1
,⋯,hatt|U|

G  for all the attributes in U . The 
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public parameter PP  is issued as 1( , ) , , , ,PP e g g g g =      ⋯ , ,l
1
,atth ⋯ ,

Uatth  . The 

master secret key =MSK g
 is held by PHRA. 

⚫ KeyGen. When DU joins the system, she or he should register and authenticate to PHRA 

to obtain the related secret key. Along with these attributes S , PHRA generates a 

corresponding secret key. Select a value pt Z randomly and calculate 

, ( ) , ,
x x

t t t
x att attD g D g g att S D h = =    = 

. Then, a secret key , ,= SSK D D  

{ }  
x xatt att SD is distributed to DU through a safe channel.  

⚫ Encrypt. Put PP , m  and ( , )M   into the algorithm, and DO produces a ciphertext 

CT  and then uploads it to PHRC. In order to hide policy, the generated ciphertext is 

different from the common ciphertext in basic CP-ABE such as [14]. Specifically, the 

Encrypt phase of PPADS contains two steps: CTGen  and ABFBuild . The CTGen  step 

generates common ciphertext and the ABFBuild  step assists DU to determine their 

attribute positions on the access matrix M . It is crucial for the second step that the 

attribute mapping function   can be recovered according to attribute bloom filter.  

1) Step 1. 
0( , ,( , ))→CTGen PP m M CT . The step is regarded as a normal encryption 

algorithm. According to a LSSS, DO selects a vector z⃗=(s,z2,⋯,zn), where s  is a secret 

value and z2,⋯,zn∈Zp are chosen randomly, calculates 
i iM=  z⃗  for each [ ]i l , and 

picks random values r1, ⋯ , rl ∈ Zp . Then DO produces the corresponding ciphertext 

0CT as below.    

0 0( , ) , ,=  =  =s sCT C m e g g C g ( )

,1 ( ) ,2 ,3 [ ]{ , , } , − −

= = = i i i i ir r

i i i i i lC g h C g C g
   

  

where ,3iC  will be used to update ciphertext in the CTUpdate algorithm. That is to say, 

the difference between the generated ciphertext and the common ciphertext in CP-ABE 

is the component ,3iC . 

2) Step 2. (( , ))→ABFBuild M T . The step calls Algorithm 1 to generate T that hides 

. 

At last, DO uploads ciphertext 
0CT  and ( , )M T , instead of ( , )M  , that is 

0 , ,=  CT CT M T , to PHRC. 

⚫ Decrypt. DU receives the ciphertext 
0 , ,=  CT CT M T , she or he can decrypt 

successfully while her or his attribute sets meet specified access policy contained in the 

ciphertext. The Decrypt  algorithm in PPADS includes three steps: 

,ABFQuery MapRecover and DecTest . The ABFQuery  algorithm aims at inquiring 

for the row value in terms of each user attribute, the MapRecover  algorithm is designed 

to restore the mapping functions corresponding to the row number and then the DecTest  

step is to test that the decryption can pass or not.  

1) Step 1. ( , )→ABFQuery S T . 
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The step is executed by calling Algorithm 2. Put the attribute set S  and the Attribute 

Bloom filter T into Algorithm 2, then outputs a mapping function : →S J . In terms of 

each attribute xatt S , relevant value = +x xr l x  is inserted. In light of the algorithm, 

calculate k  locations [ ]{ ( )} j x j kh att , and get the corresponding value [ ]{ [ ( )]} =j
x j j kr T h x

. Therefore, there exists  rx=rx
1⨁rx

2⨁⋯⨁rx
k . Furthermore, the row number of the inserted 

attribute 
xatt  can be represented as modx xrownum r l= = (rx

1⨁rx
2⨁⋯⨁rx

k)modl. Hence, 

the row numbers will be generated and then perform the following algorithm.        

Remarks. Notice that the returned row numbers are valid while user attributes are lying 

in the structure, and other row numbers of the rest of attributes are merely random values. 

Besides, it is worth noting that quite other attributes maybe regain an identical row 

number. In this case, it is generally impacted by the quantity of attributes belonged to 𝑆 

and the size of access structure. 

2) Step 2. ( ) →MapRecover P . 

The step is executed by Algorithm 3. Put   into the algorithm, and outputs a set P  

filled with i  by choosing all the attributes in S . As shown in Algorithm 3, in terms of 

each row number, the algorithm selects all attributes in J  to form an attribute set 

iS  while satisfying the properties of injective functions i ji j S S   . Later, the set P  

is composed by all , [ ]i i l . After then, for each i P  and relative secret key 

i
SS

SK SK , the following algorithm can be performed.  

3) Step 3. 0( ,( , ), ) /
i

J i S
DecTest CT M SK m→ ⊥ . 

This step is a normal decryption algorithm. The algorithm extracts an attribute set I  

derived from 
JM , which { | ( ) }I i i S=   {1,⋯,l}, 

JM  represents the specific matrix 

formed by the row number attached to J and computes the coefficients { }i p i IZ   such 

that i i

i I

w M


 =  (1,0,⋯,0)  and 


 = i i

i I

s  . Then for each i I , the algorithm 

calculates the above formula. If 
iS cannot be accordant to ( , )J iM  , then output ⊥ . 

 

 

0

2, 1, 3,

( , ) 1

( ( , ) ( , )) ( , )

( , ) ( , )
( , )

( , )

( , )

( , )

i i

i

i i

w

i i i

i I i I

s ts
s

tw

i I

s

s

e C D
B

e C D e C D e C D

e g g e g g
e g g

e g g

C m e g g
m

B e g g

 



= 
 


= =


= =

 







 


 





 (2) 
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⚫ PolUpdate. DO performs the policy update and generates a transforming key, which is 

used to update ciphertext for PHRC. Set the old structure ( , )M  , the updating or new 

Algorithm 1: ABFBuild 

Input:  

1.  

2. =new -element array of -bit strings 

3. for  to  do 

4. //initialized 

5. end for 

6. for  to do 

7.   Select a random number , such that 

    

 
8.   EmptyPos=0, FinalShare=  

9.   for  to do 

10.       

//get the position index 

11.   if    then 

12.    if   EmptyPos==0 then 

13.      EmptyPos=pos 

       //store the position  

14.    Else 

Select a random number from  

15.    

16.    

17.   else 

18.    

19.  end for 

20.     

 //reserve 
21. end for 

22. for  to  do 

23. if then 

24. Select a random number from  

25.  

26. end for 

Output:  

 

Algorithm 2: ABFQuery 

Input:  

1.   

 2. for   do 

3.   

4.  for  to  do 

5.    //get the index 

6.    

7.  end for 
8.   

9.  if  then  

10.    

11.  if   then 

12.    add  into  //randomized 

13.  end if  

14.  Add   into  

15. end for 

Output:  

Algorithm 3: MapRecover 

Input:  

1.  

 2. for each   do 

3.    

4.    

5. end for  

6. for  to  do 

7.    

8.   for each  do 

9.      

10.     

11.     

12.     

13.    Add  to  

14.   Add  into  

15.   end for 

16.   Add  into  
17. end for  //compose an attribute set 

Output:  
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 1, January 2021                      333 

structure ( , ) M   and encrypted information ( )EnInfo m , which is defined as ,3iC . 

Define ( ),i Mnum  as the quantity of attribute ( )i  in M  and ( ), i Mnum  as the quantity of 

attribute ( )i  in M , respectively. Concretely, update algorithm is classified as two steps. 

1) Step 1. This step is used to pick the secret value s  and ( )EnInfo m  and attribute mask 

i ' . Policy update would be classified into three cases according to the distribution of 

attribute location: 

Case 1: Let  Ι1,M'  be a set of attributes which existed in an original structure if 

( ), ( ), i M i Mnum num  . 

Case 2: Let  Ι2,M'  be a set of attributes which existed in an original structure and 

appear more than once only if ( ), ( ), i M i Mnum num  . 

Case 3: Let  Ι3,M' be a set of attributes which did not exist in an original structure. 

2) Step 2. This step is used to generate a transforming key. Specifically, on the basis of the 

new access structure ( , ) M  , the patient generates the random vector  z⃗'=(s,z2
' ,⋯,zn

' )

pZ  with the secret value s . Compute j j 'M=   z⃗' , where  'jM  is  j -th of M ' . 

Attribute parameter 
i  and mask 

i ' are reserved by the original encryption. On account 

of the above three cases, the transforming key can be regarded as:  

Case 1: If ( , )j i   Ι1,M', select random number
j p' Z , generate the transforming key 

as: 

               
1 2 − −

= = j i j j( ) ( )( ) ( )
j ,i ,m j ,i ,m j ,i

'

,

' '

mTK (TK ,TK ) ( g ,g ).
     

 

Case 2: If ( , )j i Ι2,M', select 
j j p,a' Z , compute the transforming key as:  

1 2 3 − −
= = j j i j j( a ) ( )( ) ( ) ( )

j ,i ,m j ,i ,m j ,i ,m j ,i ,m

' '

j

'
TK (TK ,TK ,TK ) ( a ,g ,g ).

     
 

Case 3: If ( , )j i   Ι3,M', select random number
j p' Z , generate the transforming key 

as: 
1 2 3 − −

= = j j j j jr r ( )( ) ( ) ( )
j ,i ,m j ,i ,m j ,i ,m j ,i ,m ( i )

' '
TK (TK ,TK ,TK ) ( g h ,g ,g ).

   

  
At last, the transforming key 

mTK  is described as: 

1, 2, 3,, , ( , ) , , ( , ) , , ( , )( 1,{ } ),( 2,{ } ),( 3,{ } ) .
M M Mm j i m j i I j i m j i I j i m j i ITK Case TK Case TK Case TK
    =  

 

⚫ CTUpdate. After receiving the transforming key, PHRC will generate a new ciphertext. 

Then a final ciphertext is composed of the new ciphertext and an updated attribute bloom 

filter. Therefore, there exist two steps as follows. 

1) Step 1. ( , ) →mCTUpdate CT TK CT . The update ciphertext algorithm inputs the 

transforming key 
mTK  and the old ciphertext CT , and then outputs an update ciphertext 

CT  according to the following three cases. 

a. If  Ι1,M'  in Case 1 holds, the updated ciphertext 
jC ' is described as: 

1 2
1 1 2 2 3

− −
= =  =  = = = =j j j j j' r r ( )( ) ( )

j j , i , j ,i ,m ( i ) j , i , j , j ,i ,m

'
C (C C TK g h ,C C g ,C T' ' ' ' K g ).

   


 

In this formula, j ir r= is consistent with the original ciphertext.                
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b. If ( , )j i   Ι2,M'  in Case 2 holds, the updated ciphertext 
jC '  is described as: 

2 3
1 1 2 2 3

− −
= =  =  = = = =j j j j j j ja r a r ( )( ) ( )

j j , i , j ,i ,m ( i ) j , i , j , j ,i ,

'

m

'
C (C C TK g h ,' ' ' 'C C g ,C TK g ),

   

   

where =j j ir a r . 

c. If ( , )j i   Ι3,M'  in Case 3 holds, the 
jC '  is described as: 

1 2 3
1 2 3

− −
= = =  = = = =j j j j jr r ( )( ) ( ) ( )

j j , j ,i ,m ( i ) j , j ,i ,m j , j

'

,i ,m

'
C (C TK g h ,C T' ' ' K g ,C TK' g ).

   

  

2) Step 2. ( , )  →UpdateABFBulid M T . The ABFBulid  algorithm is run again. The 

algorithm inputs the new policy, then outputs a new attribute bloom filter. Since DO has 

a new access policy, we can run the ABFBulid  algorithm to get a new T  as a part of 

the update ciphertext. 

In conclusion, the final ciphertext could be regarded as 
0

  = 'CT (CT ,M ,T ),  
where 

0CT '  is 

defined as 0 0 = j j [ l']CT (C,C ,{ }'C' ) . 

5. Security Analysis 

5.1 Analysis of Ciphertext Indistinguishability 

Theorem 1.  Assume q -parallel BDHE assumption holds in groups ( ), TG G , then PPADS is 

IND-CPA secure under the framework of the selective access policy attacks in the standard 

model. 

Proof: Supposing that an attacker 𝒜 could breach our system in a polynomial time with non-

negligible advantage of  in CPA security game, then a challenger ℬ would have an advantage 

of 
2


to resolve the difficult problem. 

Pick , ps Z randomly, the decisional q - parallel BDHE problem used in PPADS is defined 

as:  y⃗= (g,gs,gβ,⋯, gβ
q

,gβ
q+2

,⋯,gβ
2q

)
 
and Z . Later on, given a coin flip u , if 1=u , then 

1

( , )
+

=
q sZ e g g 

; Or else, Z is selected from 
TG  randomly. Then ℬ is given a guess value. 

Initialization. 𝒜 chooses the challenging policy ( , ) M  and transmits it to ℬ. 

Setup. ℬ simulates PP  as below: 

⚫ Pick a random number pZ  and figure up ( , ) ( , ) ( , )


= 
q

e g g e g g e g g   
, denoted 

1+= + q   . 

⚫ Select pZ randomly, then compute g
. 

⚫  x U , put a corresponding number xz randomly, then calculate 
xh : 

1) While 
  maps an index i∈{1,2,⋯,l

*}
 
to an element x , put 

 
2

,1 ,2( ) ( )i ix
M Mz

xh g g g
 

=  
⋯ ,( )

n
i nM

g
 

 . (3) 
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2) Otherwise, put = xz

xh g . 

Phase 1. In the phase, 𝒜 can obtain a group of secret keys except that attribute S  that satisfy 

access matrix M . ℬ picks a value  pr Z  randomly and vector 𝑤⃗⃗⃗ = (w1,w2,⋯,wn*) n
pZ


  

with the first element 1 1w = − . Put w⃗⃗⃗ 0iM  = , , ( ) i i S . From the property of a LSSS, 

there consequentially exists such a vector. Then the simulator ℬ  implicitly defines t  as 

(denoted N'={2,⋯,n*}): 

 
1 1

1 2





− − +
= + + +

q q q n

n
t r        (4) 

Generate , ,
xattD D D  as follows: 

 

1 1
2

1 2
( ) ,

− − +
+ −

+ + +



= =
q q q n

q i
i n

r w w wwr

i N

D g g g D g
    

 (5) 

While there not exists an index {1,2, , }i l  mapped to x , put ( )= x

x

z

attD D . Otherwise, 

put (denoted N={1,⋯,n*} ) 

 

,

1( )

,

( ) ( )



+ + −

  

 
=   

 
 

 
i j

q j k
jx k

x

M

rz

att

j N k N k j

D D g g
 

 (6) 

Challenge. 𝒜 returns two plaintexts 0m  and 1m . Then ℬ opts for a random value {0,1}=  

and calculates = 
'sC m Z e( g ,g )

  and 0 =
sC g . Next, ℬ  picks y

2
',⋯,y

n
'  randomly and 

forms the vector v ⃗⃗⃗: v⃗
2

2 3 ,'( s,s y ,s y ' = + + ⋯ 1n n
pn

,s y ) Z'




−
+  . Furthermore, ℬ  selects 

some randomized numbers r1
',⋯,rl

'
pZ . The challenge ciphertext is produced:  

 

 1

− 



=   
j

( i ) ( i ) i i , j i i
z z r M' 'rs

i ,

j N

''
C ( g ) g ( g ) g  

      

 
                 (7) 

 2

−
=  irs

,

'

iC g g , 
3


−



=  j i , j i '

,

'y M

i

j N

C ( g ) g
  (8) 

Set  1 2i i i i , i ,r s r , sM s' M'   = − = + +⋯
1n

i ,n is M ,i'' − + +  {1,2,⋯,l
*}. 

Phase 2. Phase 2 is identical to Phase 1. 

Guess. 𝒜  outputs a guess  . While =  , ℬ returns 1 to suggest that 
1

( , )
+

=
qa sZ e g g . Or 

else, ℬ gets back 0 that signifies Z  is a random element. From the above interactive game, it 

is visible that the simulation of key queries and ciphertext performance was identical to the 

real system. 
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1) If 0=u , GTZ , 𝒜 is winner possessing the probability 
1

[ | u 0]
2

Pr   = = = . 

Then ℬ outputs 0 =u  while     and 
1

[u u | u 0]
2

Pr  = = = . 

2) If 1=u , ℬ successfully simulated the challenge ciphertext. Suppose 𝒜 break the system 

with the advantage of , ℬoutputs 1 =u  while  =   and uP
1

[u u |
2

r 1]  = = = + . 

In a word, the advantage of  ℬ can be described as:   

1
Adv [u u | u 0] [u 0] [u u | u 1] [u 1]

2

1 1 1 1 1 1
( )

2 2 2

Pr Pr r

2

P r

2 2

P

 

 = = =  = + = =  = −

=  +  + − =

B

 

Hence, we proved that PPADS is IND-CPA secure under the (decisional) q -parallel BDHE 

assumption. 

5.2 Security Comparison  

Security level. Table 1 presents intuitional function comparisons. However, PPADS and Hao 

et al.’s scheme [25] can provide a stronger privacy protection. In particular, the disclosure of 

access structure can lead to the theft of privacy information, since access structure existed in 

the form of plaintext. However, the full policy hiding mentioned in PPADS cannot obtain any 

sensitive information through access policy, which can guarantee higher security. In addition, 

Theorem 1 indicates that PPADS is selectively secure. Dynamic update can be realized in 

PPADS and [29, 33]. Specifically, the difference is that their schemes adopted different update 

classification ways. However, all of them only implemented single functionality. Based on the 

above comparisons, PPADS possesses more powerful functionalities. 

Table 1. Functionality Comparisons 

Schemes 
Policy 

update 

Partial policy 

hiding 

Full policy 

hiding 
Security 

Expressiveness 

of  policy 

[11] × √ ×  selective AND-gates 

[19] ×  √ ×  full LSSS 

[25] ×  ×  √ selective LSSS 

[29] √ ×  ×  selective LSSS 

[33] √ ×  ×  selective LSSS 

Ours √ ×  √ selective LSSS 

Privacy protection and policy update. In PPADS, attribute can be hidden by concealing the 

attribute mapping function  . Data users are allowed to query the corresponding mapping 

function for their owned attributes. However, users who can pass decryption test are authorized 

medical staffs. Later on, the ABFQuery  oracle returns a random value to  𝒜. Consequently,  

ABFQuery  algorithm cannot reveal any user privacy. Furthermore, transforming key queries 

file:///D:/Download/Dict/8.9.3.0/resultui/html/index.html#/javascript:;
file:///D:/Download/Dict/8.9.3.0/resultui/html/index.html#/javascript:;
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still can not improve the advantage of the adversary. Assume that ( , )i iM  
 and ( , )j jM  

 

are old and new access structure, respectively. Then considering the transforming key queries 

0( , , )i iTK m M  
and 1( , , )j jTK m M  

, the transforming key oracle returns the same 

transforming key while the adversary 𝒜 can not distinguish the encryption between 0m  and 

1m . Thus, PPADS is secure to protect the policy privacy. 

6. Performance Analysis 

In the section, we contrast our system with other corresponding works [11, 19, 25, 29, 33]. 

Table 2 displays the specific symbol notations. We further give the storage cost as shown in 

Table 3. Note that an element length in each group , TG G is set to 512 bits. From Table 3, due 

to the characteristic of bloom filter, the size of ciphertext in PPADS is smaller contrasted with 

Lai et al.’s scheme [19]. Furthermore, since the classification of updating ciphertext is different 

from Ying et al.’s scheme [29], the size of transforming key and update ciphertext in PPADS 

is shorter. Table 4 shows the time complexity comparisons of each algorithm among these 

schemes. Since the time complexity of updating ciphertext is almost the same, we only 

compare the computation time of updating transforming key.  
 

Table 2. Notations 

Notations Terms 

U  The number of attributes in the system attribute universe 

S  The number of attributes in the user attribute set 

lL  The bit-length of the value l  

G  The bit-length of element in G  

GT  The bit-length of element in GT  

ZP  The bit-length of element in ZP  

h  The bit-length of hash function 

t  The number of the hash functions 

k  The number of the update attributes 

m  The size of the Attribute Bloom Filter 

l  The number of attributes in the access policy 

 

Table 3. Comparisons of Storage Overhead 

Schemes [11] [19] [25] [29] [33] Ours 

PP 
(3 )+ GU

+ GT  

(4 )+ GU

+ GT  

(2 )+ GU  

+ GT  

(2 )+ GU  

+ GT h  

(2 )+ GU

+ GT  

(2 )+ GU  

+ +G ZT Pl

 

MSK (2 )+ ZPU  +G ZPU  G  G  G  G  
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SK (1 2 )+ GS  (1 2 )+ GS  (1 2 )+ GS  (2 )+ GS  (2 )+ GS  (2 )+ GS  

CT 
(1 )2+ G  

+ GT  

(1 )4+ Gl  

+ 2 GT  

+ ( ),M   

(1 )+ Gl
 

+ GT  

+
+ lM m L  

+ k h  

(1 )2+ Gl

+ GT  

+ ( ),M   

(1 )2+ Gl

+ GT   

+ ( ),M   

+ | |Pl Z  

(1 )3+ Gl
 

+ GT  

+ + lM m L  

+ k h  

mTK  

Type1 

— — — 2 Gt  

ZP  2 G  

Type2 3 ZP  | | 2+Z GP  

Type3 2+Z GP   ( 2)+ Gt  

CT'  

Type1 

— — — 2 Gt  2 +G ZP  ( 2)+ Gt )  Type2 

Type3 

 

Table 4. Comparisons of Computation Cost 

Schemes [11]  [19]  [25] [29] [33] Ours 

Encryption 

 
 

 

 

 

 

 

 

 

 

Decryption 
 
 

 

 

 

 

 

 

 

 

 

 

 

Up-

date 

Type1 — — —    

Type2 — — —    

Type3 — — —    

We can draw an intuitive efficiency comparison graph based on Table 4, where M, E, P, 

and H denote a multiplication operation, an exponent operation, pairing operation, and hash 

operation, respectively. To evaluate the feasibility of PPADS for PHR system, some necessary 

experiments are conducted to measure time operation. These experiments are carried out by a 

laptop with an Intel configuration, CPU, TM i5-7500@3.40GHz, and 4GB RAM. We detect 

the efficiency of PPADS on the basis of Pairing-based Cryptography (PBC) library [34]. Since 

the encryption and decryption time are concerned factors to assess the efficiency of the system, 

we make a comparison of the computational time between PPADS and Lai et al.’s scheme 

[19]. Fig. 3 and Fig. 4 illustrate the comparison of encryption time and decryption time for 

policy hiding, respectively. Though the encryption and decryption time of both our system and 

Lai et al.’s scheme [19] increase along with the number of attributes, PPADS is more efficient 

since fewer pair operations are required.  

( )+ +2l l 2 E

+M

( )+6l 1 M

( )+ +6l 4 E

( )+ +l 1 M tH

( )+ +2l 1 E

( )+ +l 1 M tH

( )+ +3l 2 E

( )2l+1 M+tH

( )+ +3l 2 E

( )+ +l 1 M tH

( )+ +4L 2 E

 2M
( )+ 2l+1 P

 +2M lE

( )+ +2l 1 P

 +2M 2lE

( )+ +2l+1 P tH

 2M+lE

( )+ + +2l 1 P tH

 +2M tH

( )+ +l 1 E

( )+ +2l 2 P

 +2M 2tE

( )+ + +2l 2 P tH

+ +M 3E tH +M E +2M 2E

+ +M 3E tH +3M 2E +3M 2E

+ +M 3E tH + +2M 3E tH + +2M 4E tH
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In addition, focusing on policy update, Fig. 5 elaborates the concrete computational time 

between PPADS and Ying et al.’s scheme [29]. In [29], since the time complexity of each type 

for transforming key is the same, we present only a curve comparison analysis. Table 4 

presents the time complexity of Type 1 and Type 2 for transforming key do not increase along 

with the number of attributes in PPADS, while only Type 3 in PPADS and all types in Ying 

et al.’s scheme [29] require them. Generally, PPADS can achieve higher efficiency than Ying 

et al.’s scheme [29]. 

In summary, PPADS has the advantage of supporting expressive access structure, full 

policy hiding, and flexible policy update over the existing schemes. Therefore, PPADS is more 

applicable for data confidentiality and user privacy in PHRs. As depicted that the experimental 

results are coincident with the theory analysis, thus PPADS is feasible.  

7. Conclusions 

In this paper, we have feasibly addressed data confidentiality and user privacy in PHRs by 

recommending PPADS, which helps patients to attain medical assistance conveniently. The 

core building block of PPADS is a basic CP-ABE scheme that realizes full policy hiding and 

dynamic update simultaneously. In PPADS, the whole attribute can be hidden by an attribute 

bloom filter and the ciphertext can be updated by PHRC with a transforming key. Moreover, 

the system provides a specific security proof under decisional q -BDHE assumption. 

Theoretical analysis and extensive experiment result demonstrate that PPADS has the 

advantage over other schemes. However, PPADS can only support small universe. Thus, our 

future work will pay more attention to how to set up a system with large universe effectively. 

Fig. 3.  Encryption Time for Policy Hiding  Fig. 4.  Decryption Time for Policy Hiding 

Fig. 5.  Computation Time of  
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Furthermore, the proposed system from bilinear pairing cannot resist quantum computation, 

and thus post-quantum secure PPADS over lattice is on the list of things worth studying.  
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