• Title/Summary/Keyword: chlorophyll fluorescence(Fv/Fm)

Search Result 94, Processing Time 0.034 seconds

Diurnal and Seasonal Variation of Chlorophyll Fluorescence from Korean Fir Plants on Mt. Halla (한라산 구상나무 잎의 엽록소형광의 일변화와 계절적 변화)

  • 오순자;고정군;김응식;오문유;고석찬
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.1
    • /
    • pp.43-48
    • /
    • 2001
  • Chlorophyll fluorescence of needles of Korean fir (Abies koreana) plants and environmental factors of their natural habitat were investigated in order to obtain the information for environmental adaptation and conservation of Korean fir plants. The photochemical efficiency of photosystem II, Fv/Fm, of Korean fir needles was significantly low (0.19-0.36) in the winter, whereas it was high (0.8-0.86) in the summer. The Fv/Fm value of the winter was slightly higher at mid-day than at dawn, suggesting that mid-day environmental conditions of the winter were favorable on needles of Korean fir plants. In contrast, the mid-day Fv/Fm value of the summer maintained high (around 0.8). It indicates that mid-day environmental conditions of the summer did not induce photodamage, although it caused a slight decrease in the Fv/Fm values. The non-photochemical fluorescence quenching (NPQ) of Korean fir needles was very low (0-0.01) all through the day in the winter. However, it was high (0.76) at mid-day in the summer. These results suggest that Korean fir plants have a system for the protection of PS II from mid-day environmental stresses of the summer. In the winter, the Fv/Fm values were positively correlated with temperature, light intensity and relative humidity, although NPQ values showed no correlation with any of them. In the summer, the Fv/Fm values were positively correlated with relative humidity but negatively correlated with temperature and light intensity. These results indicate that increase of tempera-ture, light intensity and relative humidity lead to promotion of the photochemical efficiency in the winter and high temperature and light intensity may cause photoinhibition in the summer.

  • PDF

Developmental Changes in Photosynthetic Pigments and Chlorophyll Fluorescence in Etiolated Rice Seedlings During Greening

  • Chun, Hyun-Sik;Moon, Byoung-Yong;Suh, Kye-Hong;Lee, Chin-Bum
    • Journal of Plant Biology
    • /
    • v.39 no.4
    • /
    • pp.309-314
    • /
    • 1996
  • Developmental of photosynthetic pigments and changes in chlorophyll fluorescence of dark-grown rice seedlings were studied during greening. Light-illumination stimulated accumulations of total chlorophylls and carotenoids in leaves of etiolated seedlings, accompanied by a decrease in the ratio of chlorophyll a to chlorophyll b. When the composition of carotenoids was analyzed, violaxanthin level was shown to increase up to 24 h after the beginning of light illumination, followed by a subsequent decline. In contrast to this, zeaxanthin level increased consistently with progress of deetiolatin. The role of zeaxanthin is discussed in relation to chlorophyll fluorescence quenching. A study on chlorophyll fluorescence kinetics of the rice seedlings being deetiolated showed a time-dependent increase in Fv/Fm (yield of variable fluorescence/maximum yield of fluoresecnece) ratios, indicating that greening is responsible for the activation of photochemical reaction centers of the photosystem. When chlorophyll fluorescence quenching was examined, qNP (nonphotochemical quenching) and qE (energy-dependent quenching) exhibited a time-dependent decline with progress of greening. The presented results indicate that greening-induced development of the photosynthetic machinery is associated the conversion of the carotenoid violaxanthin to zeaxanthin, suggesting that zeaxanthin synthesized in the illuminated leaves may provide the protection from the damage when etiolated plants are exposed to light.

  • PDF

Effects of Salinity on Chlorophyll Fluorescence from Porphyra Thalli and Comparison of Species with Different Intertidal Distribution

  • Hong Dang Diem;Kim Tae Hoon;Hwang Mi Sook;Chung Ik Kyo;Lee Choon-Hwan
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.1
    • /
    • pp.122-128
    • /
    • 1998
  • Characteristic changes in chlorophyll fluorescence from thalli of red alga, Porphyra, under high salt stress and during subsequent recovery were investigated, and the differences in the sensitivity to the stress among four species of Porphyra with different intertidal distributions were compared. By the treatment of NaCl with $9\%$ or higher concentrations, photochemical efficiency (Fv/Fm) decreased in a biphasic pattern: a rapid decrease was observed within 1­3 h and followed by a slow decline. The decrease of Fv/Fm was mainly due to the increase of Fo without significant increases of Fm. When the thalli treated with $15\%$ NaCl for 6 h were returned to natural sea water for recovery, the increase of Fv/Fm also showed a biphasic pattern: a rapid increase of Fv/Fm was observed within 2 h and followed by a slow increase. Differences in the sensitivity to salt stress among the four species could be found during recovery after the treatment of severe salt stress. After the treatment of $20\%$ NaCl for 6 h, Fv/Fm decreased below 0.3 in all of the four Porphyra species, and the species living in upper parts of the intertidal zone (P. suborbiculata and P. pseudolinearis) could recover better compared with the species in lower parts of the intertidal zone (P. seriata and P. yezoensis), during recovery for 24 h. The species collected from the coast of the South Sea seemed to be more tolerant than those in the East Sea.

  • PDF

Chlorophyll a Fluorescence Response to Mercury Stress in the Freshwater Microalga Chlorella Vulgaris (담수산 클로렐라(Chlorella vulgaris)의 수은 스트레스에 대한 엽록소형광 반응)

  • Oh, Soonja;Koh, Seok Chan
    • Journal of Environmental Science International
    • /
    • v.22 no.6
    • /
    • pp.705-715
    • /
    • 2013
  • The response of the freshwater microalga Chlorella vulgaris to mercuric ion ($Hg^{2+}$) stress was examined using chlorophyll a fluorescence image analysis and O-J-I-P analysis as a way to monitor the toxic effects of mercury on water ecosystems. The levels of photosynthetic pigments, such as chlorophyll a and b and carotenoids, decreased with increasing $Hg^{2+}$ concentration. The maximum photochemical efficiency of photosystem II(Fv/Fm) changed remarkably with increasing $Hg^{2+}$ concentration and treatment time. In particular, above $200{\mu}M\;Hg^{2+}$, considerable mercury toxicity was seen within 2 h. The chlorophyll a fluorescence transient O-J-I-P was also remarkably affected by $Hg^{2+}$; the fluorescence emission decreased considerably in steps J, I, and P with an increase in $Hg^{2+}$ concentration when treated for 4 h. Subsequently, the JIP-test parameters (Fm, Fv/Fo, RC/CS, TRo/CS, ETo/CS, ${\Phi}_{PO}$, ${\Psi}_O$ and ${\Phi}_{EO}$) decreased with increasing $Hg^{2+}$ concentration, while N, Sm, ABS/RC, DIo/RC and DIo/CS increased. Therefore, a useful biomarker for investigating mercury stress in water ecosystems, and the parameters Fm, ${\Phi}_{PO}$, ${\Psi}_O$, and RC/CS can be used to monitor the environmental stress in water ecosystems quantitatively.

Genetic Analysis of Photoinhibition in Barley

  • Chun, Jong-Un
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.296-302
    • /
    • 2001
  • Winter cereals are acclimated during wintering, and thereafter their freezing resistance is increased. In order to analyze inheritance and heritabilities for photoinhibition of photosynthesis by high light intensity under low temperature, and to evaluate the relationship between low temperature-induced photoinhibition and winter survival, 4 parental half diallel crosses were used. The detached leaves of 7-8cm long from plants grown for 35 and 55 days were placed on wet filter paper and placed in trays at 5$^{\circ}C$ cold room with 1,200 $\mu$mol $m^{-2}$ $s^{-1}$ PPFD. Chlorophyll fluorescence was measured with a chlorophyll fluorescence system after dark adaptation for 30 min. The Fv/Fm of 35day old plants was reduced from 0.714 in the control leaves to 0.409 and 0.368 following photoinhibitory treatment of 6h and 8h and the CVs were increased from 0.8% to 22.2-22.3%. The Fv/Fm of 55-day old plants was reduced from 0.775 in the control leaves to 0.485 and 0.439 following photoinhibitory treatment of 10h and 12h, respectively. According to half diallel cross analysis, Reno and Dongbori 1 (highly resistant to photoinhibition) was dominant, but Oweolbori (susceptible to photoinhibition) was recessive, and photoinhibition showed partial dominance with highly additive gene action. Dongbori 1 showed the greatest GCA effects for photoinhibition, and GCA/SCA ratios (8.7-22.3 times) indicated that the additive variance for the character was more important. Winter survival in barley crosses was positively correlated with resistance to photoinhibition and significantly fitted by linear regression ($R^2$=0.751$^{**}$-0.779$^{**}$). The chlorophyll fluorescence measured by Fv/Fm has been found to be highly inheritable and very useful in evaluating relative levels of freezing resistance in barley.ley.

  • PDF

A Simple Method for Testing Freezing Resistance Based on Chlorophyll Fluorescence in Tea (Camellia sinensis L.)

  • Chun, Jong-Un;Jeong, In-Ho;Choi, Hyoung-Kog
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.5
    • /
    • pp.322-327
    • /
    • 2000
  • For the stable production of high quality tea, the freezing resistance is a very important character. Most of the farmers have planted out-pollinated seeds that are not genetically pure. So, with small sample, a quick and simple method is required to test freezing resistance of lots of germ-plasm and early generation of hybrids. The absorbances(A530 nm) of TTC reduction solution at -5$^{\circ}C$ were positively correlated with resistance to photoinhibition of PSII in 6 hour photoinhibitory treatments, being significantly fitted by simple linear regression ($R^2$=${0.64}^{**}$). Chlorophyll fluorescence measured by Fv/Fm was found to be very useful in evaluating the relative levels of freezing resistance in tea.

  • PDF

LIGHT-DEPENDENT CHANGES OF CHLOROPHYLL FLUORESCENCE AND XANTHOPHYLL CYCLE PIGMENTS IN MAIZE LEAVES DURING DESICCATION

  • Xu, Chang-Cheng;Lee, Choon-Hwan;Zou, Qi
    • Journal of Photoscience
    • /
    • v.5 no.1
    • /
    • pp.17-22
    • /
    • 1998
  • Changes of chlorophyll fluorescence and xanthophyll cycle pigment contents in maize leaves were investigated dunng desiccation in darkness or in the light. In darkness, a drastic dehydration of detached maize leaves down to 50% relative water content (RWC) affected photochemical efficiency of photosystem II (Fv/Fm) and pht)tochemical quenching (qP) only slightly. In contrast, desiccation in the light with a moderate intensity led to a pronounced reduction in Fv/Fm with a Fo quenching when RWC was greater than 70%. This reduction in Fv/Fm could be recovered in darkness under hutrod condition. In leaves with RWC below 70%, significant reduction in Fv/Fm was accompanied by an increase of Fo, which could not be reversed within 5 h in darkness under humid condition. The nonphotochemical quenching increased during desiccation in the light with a concomitant rise in zeaxanthin at the expense of violaxanthin. Pretreatment with dithiothreitol (DTT), an inhibitor of zeaxanthin synthesis, inhibited the development of nonphotochemical quenching and prevented the xanthophyll interconversion during desiccation in the light. These results suggest that even light with a moderate intensity becomes excessive under dehydration and zeaxanthin-associated photoprotection of photosynthetic apparatus against photodamage is involved, but the protection is not complete against severe desiccation.

  • PDF

Selecting Appropriate Seedling Age for Restoration Using Comparative Analysis of Physiological Characteristics by Age in Abies koreana Wilson

  • Seo, Han-Na;Chae, Seung-Beom;Lim, Hyo-In;Han, Sim-Hee;Lee, Kiwoong
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.4
    • /
    • pp.315-322
    • /
    • 2021
  • The aim of this study was to investigate the sensitivity to environmental stress, and changes in the photosynthesis capacity in Abies koreana seedlings by age and to suggest the most effective age for restoration. To identify these physiological characteristics of A. koreana, the chlorophyll fluorescence and photosynthetic capacity of 1-, 2-, 3-, 5- and 6-year-old A. koreana seedlings were observed from June 2020 to June 2021. The maximum quantum efficiency of Photosystem II (Fv/Fm), a chlorophyll fluorescence measurement parameter, was strongly positively correlated with the monthly average temperature (1-year-old seedling: r=0.8779, 2-year-old seedling: r=0.8605, 3-year-old seedling: r=0.8697, 5-year-old seedlings: r=0.8085, and 6-year-old seedlings: r=0.8316). The Fv/Fm values were the lowest in winter (November 2020-March 2021). In addition, the Fv/Fm values of 1-, 2-, and 3-year-old seedlings in winter were lower than that of 5- and 6-year-old seedlings, while the Fv/Fm values in summer were relatively higher than those in winter. Further, the Fv/Fm values of seedlings of all ages decreased in August 2020, when the monthly average temperature was the highest. In particular, 1-year-old to 3-year-old seedlings showed Fv/Fm values less than 0.8. Further, the photosynthetic capacity measured in August 2020 increased with increasing seedling age. The analysis of variance results for summer Fv/Fm values showed significant differences in age-specific averages (p<0.05), and Duncan's multiple range test showed significant differences between 5- and 6-year-old seedlings and 1-, 2-, and 3-year-old seedlings (p<0.05). These results suggested that the 5- and 6-year-old seedlings were less sensitive to environmental stress and showed better photosynthetic capacity than the 1-, 2-, and 3-year-old seedlings. Therefore, 5-year-old or older A. koreana seedlings can be used as restoration materials because they can show increased adaptability and stable growth during transplantation due to their relatively high environmental resistance and photosynthetic capacity.

Effects of Ozone on Photosynithetic Activity in Chloroplast of Barley (Hordeum vulgare L.) (오존이 보리(Hordeum vulgare L.) 엽록체의 광합성 활성에 미치는 영향)

  • 정화숙
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.399-407
    • /
    • 1995
  • The effects of 0.5 and 1.0 ppm of ozone on the developing chloroplast of barley (Hordeum vulgare L) seedling during greening were investigated by PSI and II activities, chlorophyll fluorescence, and the contents of chlorophyll. Etiolated barley seedling was treated 0.5 and 1.0 ppm ozone for the first 4 h during greening. In 24 h greening experiment, the contents of chlorophyll were decreased by increasing ozone concentration from 0.5 ppm to 1.0 ppm. In 24 h greening experiment, Fo, Fv, Fm and qE were greatly decreased as the concentration of ozone was increased, but those were not considerably decreased in 48 h greening experiment. In another experiment, the developing barley seedling was treated with 0.5 and 1.0 ppm ozone for the last 4 h during greening period, which was 24 h or 48 h. In both experiments the PS II activity was decreased as the concentration of ozone was increased, but not in PS I activity. Fv, Fm and Fv/Fo were also decreased as the concentration of ozone was increased. qP and qR were strikingly decreased as the concentration of ozone was increased in both experiments.iments.

  • PDF

Chlorophyll Fluorescence and Antioxidative Enzyme Activity of Crinum Leaves Exposed to Natural Environmental Stress in Winter (겨울철 자연환경에 노출된 문주란 잎의 엽록소형광과 항산화효소 활성에 관한 연구)

  • 오순자;고석찬
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.233-241
    • /
    • 2004
  • Chlorophyll fluorescence and antioxidative enzyme activity were investigated from leaves of Crinum asiaticum var. japonicum under the natural condition in winter, in order to monitor plant response and physiological states such as vitality, productivity and so on. In the O-J-I-P transients, the fluorescence intensity of J, I, P-step decreased remarkably depending on temperature drop in winter. The photochemical efficiencies of PSII, Fv/Fm, were significantly low in late winter with decrease of Fm. These results indicate that Crinum plants were affected by seasonal drop of temperature. The catalase activity significantly decreased depending on temperature drop in winter. However, the activity of superoxide dismutase ascorbate peroxidase and peroxidase slightly increased in winter while some isoenzymes appeared in winter. These results, with the remarkable decrease of Ev/Fm in winter, represent that Crinum plants were exposed to oxidative stress and subsequently damaged leading to cell death.