DOI QR코드

DOI QR Code

Chlorophyll a Fluorescence Response to Mercury Stress in the Freshwater Microalga Chlorella Vulgaris

담수산 클로렐라(Chlorella vulgaris)의 수은 스트레스에 대한 엽록소형광 반응

  • Oh, Soonja (Agricultural Research Center for Climate Change, National Institute of Horticultural and Herbal Science, RDA) ;
  • Koh, Seok Chan (Department of Biology, Jeju National University)
  • 오순자 (농촌진흥청 국립원예특작과학원 온난화대응농업연구센터) ;
  • 고석찬 (제주대학교 생물학과)
  • Received : 2012.11.15
  • Accepted : 2013.02.25
  • Published : 2013.06.28

Abstract

The response of the freshwater microalga Chlorella vulgaris to mercuric ion ($Hg^{2+}$) stress was examined using chlorophyll a fluorescence image analysis and O-J-I-P analysis as a way to monitor the toxic effects of mercury on water ecosystems. The levels of photosynthetic pigments, such as chlorophyll a and b and carotenoids, decreased with increasing $Hg^{2+}$ concentration. The maximum photochemical efficiency of photosystem II(Fv/Fm) changed remarkably with increasing $Hg^{2+}$ concentration and treatment time. In particular, above $200{\mu}M\;Hg^{2+}$, considerable mercury toxicity was seen within 2 h. The chlorophyll a fluorescence transient O-J-I-P was also remarkably affected by $Hg^{2+}$; the fluorescence emission decreased considerably in steps J, I, and P with an increase in $Hg^{2+}$ concentration when treated for 4 h. Subsequently, the JIP-test parameters (Fm, Fv/Fo, RC/CS, TRo/CS, ETo/CS, ${\Phi}_{PO}$, ${\Psi}_O$ and ${\Phi}_{EO}$) decreased with increasing $Hg^{2+}$ concentration, while N, Sm, ABS/RC, DIo/RC and DIo/CS increased. Therefore, a useful biomarker for investigating mercury stress in water ecosystems, and the parameters Fm, ${\Phi}_{PO}$, ${\Psi}_O$, and RC/CS can be used to monitor the environmental stress in water ecosystems quantitatively.

Keywords

References

  1. Abreu, M. E., Munné-Bosch, S., 2008, Salicylic acid may be involved in the regulation of drought induced leaf senscence in perennials: A case study in field grown Salvia officinals L. plants, Environ. Exp. Bot., 64(2), 105-112. https://doi.org/10.1016/j.envexpbot.2007.12.016
  2. Aidid, S. B., Okamoto, H., 1992, Effects of lead, cadmium and zinc on the electric membrane potential at the xylem/symplast interface and cell elongation of Impatiens balsamina, Environ. Exp. Bot., 32, 439-448. https://doi.org/10.1016/0098-8472(92)90056-8
  3. Arnon, D., 1949, Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris, Plant Physiol., 24, 1-15. https://doi.org/10.1104/pp.24.1.1
  4. Bolhar-Nordenkampf, H. R., Oquist, G., 1993, Chlorophyll fluorescence as a tool in photosynthesis research. In Photosynthesis and Production in a Changing Environment, in: Hall, D. O., Scurlock, J. M. O., Bolhar-Nordenkampf, H. R., Leegood, R. C., Long, S. P. (eds.), A Field and Laboratory Manual, Chapman and Hall, London, 193-206.
  5. Boucher, N., Carpentier, R., 1999, $Hg^{2+}$, $Cu^{2+}$, and $Pb^{2+}$-induced changes in photosystem II photochemical yield and energy storage in isolated thylakoid membranes: A study using simultaneous fluorescence and photoacoustic measurements, Photosynth. Res., 59, 167-174. https://doi.org/10.1023/A:1006194621553
  6. Clijsters, H., Van Assche, F., 1985, Inhibition of photosynthesis by heavy metals, Photosynth. Res., 7, 31-40. https://doi.org/10.1007/BF00032920
  7. Elbaz, A., Wei, Y. Y., Meng, Q., Zheng, Q., Yang, Z. M., 2010, Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii, Ecotoxicol., 19, 1285-1293. https://doi.org/10.1007/s10646-010-0514-z
  8. Force, L., Critchley, C., Van Rensen, J. J. S., 2003, New fluorescence parameters for monitoring photosynthesis in plants. 1. The effect of illumination on the fluorescence parameters of the JIP-test, Photosynth. Res., 78, 17-33. https://doi.org/10.1023/A:1026012116709
  9. Jarvis, S. C., Jones, L. H. P., Hopper, M. J., 1976, Cadmium uptake from solution by plants and its transport from roots to shoots, Plant Soil., 44, 179-191. https://doi.org/10.1007/BF00016965
  10. Kahle, H., 1993, Response of roots of trees to heavy metals, Environ. Exp. Bot., 33(1), 99-119. https://doi.org/10.1016/0098-8472(93)90059-O
  11. Kelly, J. M., Parker, G. R., McFee, W. W., 1979, Heavy metal accumulation and growth of seedlings of five forest species as influenced by soil cadmium level, J. Environ. Qual., 8, 361-364.
  12. Kriedemann, P. F., Graham, R. D., Wiskich, J. T., 1985, Photosynthetic dysfunction and in vivo chlorophyll a fluorescence from manganese deficient wheat leaves, Aust. J. Agric. Res., 36, 157-169. https://doi.org/10.1071/AR9850157
  13. Kupper, H., Kupper, F., Spiller, M., 1996, Environmental relevance of heavy metal substituted chlorophylls using the example of water plants, J. Exp. Bot., 47, 259-266. https://doi.org/10.1093/jxb/47.2.259
  14. Leong, T. Y., Anderson, J., 1984, Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll protein complexes, Photosynth. Res., 5, 105-115. https://doi.org/10.1007/BF00028524
  15. Lichtenthaler, H. K., Mieh, J. A., 1997, Fluorescence imaging as a diagnostic tool for plant stress, Trends Plant Sci., 2, 316-320. https://doi.org/10.1016/S1360-1385(97)89954-2
  16. Lichtenthaler, H. K., Wellburn, A. R., 1983, Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents, Biochem. Soc. Trans., 603, 591-592.
  17. Lu, C. M., Chau, C. W., Zhang, J. H., 2000, Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis - assessment by chlorophyll fluorescence analysis, Chemosphere, 41, 191-196. https://doi.org/10.1016/S0045-6535(99)00411-7
  18. Ma, J., Xu, L., Wnag, S., Zheng, R., Jin, S., Huang, S., Huang, Y., 2002, Toxicity of 40 herbicides to the green alga Chlorella vulgaris, Ecotoxicol. Environ. Saf., 51, 128-132. https://doi.org/10.1006/eesa.2001.2113
  19. Mallick, N., Mohn, F. H., 2003, Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus, Ecotoxicol. Environ. Saf., 55, 64-69. https://doi.org/10.1016/S0147-6513(02)00122-7
  20. Nedbal, L., Soukupova, J., Whitmarsh, J., Trtílek, M., 2000, Postharvest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality, Photosynthetica, 38(4), 571-579. https://doi.org/10.1023/A:1012413524395
  21. Nilsson, H. E., 1995, Remote sensing and image analysis in plant pathology, Ann. Rev. Phytopathol., 33, 489-527. https://doi.org/10.1146/annurev.py.33.090195.002421
  22. Nriagu, J. O., Pacyna, J. M., 1988, Quantitative assessment of worldwide contamination of air, water and soils by trace metals, Nature, 333, 134-139. https://doi.org/10.1038/333134a0
  23. Oh, S. J., Zhin, K. L., Koh, S. C., 2009, Characterization of Chl a fluorescence of hydrophytes under cadmium stress, J. Environ. Sci., 18(12), 1361-1368 (in Korean). https://doi.org/10.5322/JES.2009.18.12.1361
  24. Ouzounidou, G., 1995, Cu-ions mediated changes in growth, chlorophyll and other ion contents in a Cu-tolerant Koeleria splendens, Biol. Planta., 37, 71-79. https://doi.org/10.1007/BF02913000
  25. Parekh, D., Puranik, R. M., Srivastava, H. S., 1990, Inhibition of chlorophyll biosynthesis by cadmium in greening maize leaf segments, Biochem. Physiol. Pflanz., 186(4), 236-242.
  26. Peuelas, J., Filella, I., 1998, Visible and near-infrared reflectance techniques for diagnosing plant physiological status, Trends Plant Sci., 3, 151-156. https://doi.org/10.1016/S1360-1385(98)01213-8
  27. Plekhanov, S. E., Chemeris, Y. K., 2003, Early toxic effects of zinc, cobalt and cadmium on photosynthetic activity of the green alga Chlorella pyrenoidosa Chick S-39, Biology Bulletin, 30(5), 506-511. https://doi.org/10.1023/A:1025806921291
  28. Prasad, M. N. V., 1995, Cadmium toxity and tolerance in vascular plants, Environ. Exp. Bot., 35(4), 525-545. https://doi.org/10.1016/0098-8472(95)00024-0
  29. Rojkind, M., Dominguez-Rosales, J. A., Nieto, N., Greenwel, P., 2002, Role of hydrogen and peroxidative stress in healing responses, Cell. Mol. Life Sci., 59, 1872-1891. https://doi.org/10.1007/PL00012511
  30. Srivastava, A., Guissé, B., Greppin, H., Strasser, R. J., 1997, Regulation of antenna structure and electron transport in PS II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP, Biochem. Biophys. Acta., 1320, 95-106. https://doi.org/10.1016/S0005-2728(97)00017-0
  31. Strasser, B. J., Strasser, R. J., 1995, Measuring fast fluorescence transients to address environmental questions: The JIP test, in: Mathis, P. (ed.), Photosynthesis: From Light to Biosphere, Kluwer Academic, Dordrecht, 977-980.
  32. Strasser, R. J., Srivastava, A., Tsimilli-Michael, M., 2000, The fluorescence transient as a tool to characterize and screen photosynthetic samples, in: Yunus, M., Pathre, U., Mohanty, P. (eds.), Probing Photosynthesis: Mechanism, Regulation and Adaptation. Taylor & Francis, London, 445-483.
  33. Thompson, A. S., Rhodes, J. C., Pettman, I., 1988, Culture collection of algae and protozoa catalogue of strains, Published by CCAP, Cumbria, UK, 164.
  34. Vogeli-Lange, R., Wagner, G. J., 1990, Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves, Plant Physiol., 92(4), 1086-1093. https://doi.org/10.1104/pp.92.4.1086