• 제목/요약/키워드: chlorophenol

검색결과 128건 처리시간 0.022초

흰쥐를 이용한 profenofos의 경구투여 및 피부도포 후 뇨 중 대사물질 측정 (Determination of Urinary Metabolite of Profenofos after Oral Administration and Dermal Application to Rats)

  • 민경진;조영주;이인선;차춘근
    • 한국식품위생안전성학회지
    • /
    • 제17권1호
    • /
    • pp.20-25
    • /
    • 2002
  • 흰쥐를 이용하여 profenofos의 경구투여 및 피부도포 후 뇨 중 대사물질과 뇨 중 대사물질의 시간별 배설량을 GC/MS로 측정한 결과는 다음과 같다. Profenofos를 경구투여 후 뇨 중 대사물질은 4-bromo-2-chloropheno이며, GC/MS로 분석한 결과 4-bromo-2-chlorophenol는 m/z=208에서 분자이온을 추정하였다. Profenofos를 피부도포 후 뇨 중 대사물질은 경구투여와 동일한 대사물질인 4-bromo-2-chloropheno이었다. 모 화합물이나 4-bromo-2-chlorophenol외 다른 대사물질은 검출되지 않았다. Profenofos를 경구투여 후 뇨 중 대사물질인 4-bromo-2-chlorophenol의 시간별 배설량은 12시간에 가장 많은 양이 배설되었다. 또한 48시간 내 95%가 배설되었고 72시간 이후는 대사물질이 배설되지 않았다. 한편 profenofos를 피부도포 후 뇨 중 대사물질인 4-bromo-2-chlorophenol의 시간별 배설량은 12시간에 가장 많은 양이 배설되었으며, 48시간 내 87%가 배설되었고 96시간 이후는 대사물질이 배설되지 않았다. Profenofos 의 뇨 중 대사물질인 4-bromo-2-chlorophenol는 profenofos의 생체모니터링 지표물질로서 사용될 수 있을 것이라고 생각되며, 뇨 중 4-bromo-2-chlorophenol의 시간별 배설량을 측정한 결과 경구투여보다 피부도포 후 배설이 지연된 다는 것을 알 수 있었다.

HDTMA-Bentonite로부터 페놀류 화합물의 경쟁탈착

  • 신원식;김영규;송동익
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.15-18
    • /
    • 2001
  • Sorption/desorption studies were conducted to determine sorption/desorption characteristics of phenolic compounds (phenol and 4-chlorophenol) in organically modified natural bentonite. The cationic exchange capacity (CEC) of bentonite was exchanged with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the removal capacity of organic phenol contaminants dissolved in aqueous solution. This modification produces a change of the surface property of bentonite from hydrophilic to organophilic. The single-solute and bi-solute competitive adsorptions were performed In batch mode to investigate the removal of two toxic organic Phenols, chlorophenol and 4-chlorophenol on the HDTMA-bentonite. The adsorption affinity of the 4-chlorophenol was higher than phenol due to higher octanol:water partition coefficient (Kow). The single-solute and bi-solute competitive desorptions were also performed investigate the competitive desorption of the phenolic compounds from HDTMA-bentonite. Freundlich model was used to analyze the single-solute adsorption/desorption results, while the IAST model predicted the hi-solute adsorption/desorption equilibria. The IAST model well predicted hi-solute competitive adsorption/desorption behaviors.

  • PDF

과산화수소 연속주입식 광펜톤산화공정에 의한 4-염화페놀 분해연구 (Degradation of 4-Chlorophenol by a Photo-Fenton Process with Continuous Feeding of Hydrogen Peroxide)

  • 김일규
    • 상하수도학회지
    • /
    • 제27권1호
    • /
    • pp.31-38
    • /
    • 2013
  • The degradation of 4-chlorophenol(4-CP) by various AOPs(Advanced Oxidation Processes) with continuous feeding of $H_2O_2$, including the ultraviolet/hydrogen peroxide, the Fenton and the photo-Fenton process has been investigated. The photo-Fenton process showed the highest removal efficiency for degradation of 4-chlorophenol than those of other AOPs including the Fenton process and the combined UV process with continuous feeding of $H_2O_2$. In the photo-Fenton process, the optimal experimental condition for 4-CP degradation was obtained at pH 3. Also the 4-CP removal efficiency increased with decreasing of the initial 4-CP concentration. 4-chlorocatechol and 4-chlororesorcinol were identified as photo-Fenton reaction intermediates, and the degradation pathways of 4-CP in the aqueous phase during the photo-Fenton reaction were proposed.

Ferrate(VI)를 이용한 2-chlorophenol의 분해특성 연구 (Degradation of 2-chlorophenol by Ferrate(VI))

  • 최혜민;권재현;김일규
    • 상하수도학회지
    • /
    • 제25권1호
    • /
    • pp.63-74
    • /
    • 2011
  • The degradation characteristics of 2-chlorophenol(2-CP) by Ferrate(VI) were studied. The degradation efficiency of 2-CP in aqueous solution was investigated at various values of pH, Fe(VI) dosage, initial concentration and aqueous solution temperature. The maximum degradation efficiencies of 2-CP were obtained at pH 7.0 and aqueous solution temperature of 25$^{\circ}C$. The degradation efficiency was proportional to dosage of Fe(VI). Also, the initial rate constant of 2-CP degradation increased with decreasing of the 2-CP initial concentration. In addition, the degradation pathway study for 2-CP was conducted with GC-MS analysis. Acetic acid, formic acid, benzaldehyde and benzoic acid were identified as reaction intermediates of the 2-CP degradation by Ferrate(VI).

Identification of Yarrowia lipolytica Y103 and Its Degradability of Phenol and 4-Chlorophenol

  • Lee, Jeong-Soon;Kang, Eun-Jeong;Kim, Min-Ok;Lee, Dong-Hun;Bae, Kyung-Sook;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권1호
    • /
    • pp.112-117
    • /
    • 2001
  • A nonconventional yeast strain Y103 capable of degrading several aromatic hydrocarbons was isolated from the wastewater of the Yocheon industrial complex. The strain Y103 was identified as Yarrowia lipolytica on the basis of its unique dimorphic and biochemical characteristics as determined by a Biolog test. Y. lipolytica Y103 was found to degrade phenol and 4-chlorophenol to produce catechol. The catechol then will be further degraded to produce 2-hydroxymuconic semialdehyde via meta-cleavage. These results indicate that strain Y103 degrades 4-chlorophenol, phenol, and catechol through a consecutive reaction to produce 2-hydroxymuconic semialdehyde. The most active degradation of phenol by Y. lipolytica Y103 occurred with a 0.5 mM phenl concentration in an MM2 medium at $30^{\circ}C$ and pH 7.0.

  • PDF

Electrochemical Degradation of Phenol and 2-Chlorophenol Using Pt/Ti and Boron-Doped Diamond Electrodes

  • Yoon, Jang-Hee;Shim, Yoon-Bo;Lee, Byoung-Seob;Choi, Se-Yong;Won, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2274-2278
    • /
    • 2012
  • To test the efficiency of the BDD electrode for complete mineralization of organic wastewater, phenol and 2-chlorophenol (2-CP) were treated electrochemically with both an active Pt/Ti electrode and a nonactive boron doped diamond (BDD) electrode, respectively, in neutral aqueous medium. Aqueous solutions of both phenol and 2-chlorophenol were treated electrochemically using an in-house fabricated flow through electrochemical cell (FTEC). The experimental variables included current input, treatment time, and the flow rate of the solutions. Depending on the magnitude of the applied current and reaction time, the compounds were either completely degraded or partially oxidized to other intermediates. Removal efficiencies reached as high as 93.2% and 94.8% both at the Pt/Ti electrode and BDD electrode, respectively, at an applied current of 200 mA for a 3.0 hr reaction and a flow rate of 4 mL/min. The BDD electrode was much more efficient for the complete mineralization of phenol and 2-chlorophenol than the Pt/Ti electrode.

4-Chlorophenol 분해박테리아 Arthrobacter chlorophenolicus A6로부터의 monooxygenase의 복제 및 대량발현과 정제 그리고 기질분해활성도 분석 (Overexpression and Purification of Monooxygenases Cloned from Arthrobacter chlorophenolicus A6 for Enzymatic Decomposition of 4-Chlorophenol)

  • 류송정;이소라;김한승
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권3호
    • /
    • pp.47-55
    • /
    • 2014
  • Arthrobacter chlorophenolicus A6 possesses several monooxygenases (CphC-I, CphC-II, and CphB) that can catalyze the transformation of 4-chlorophenol (4-CP) to hydroxylated intermediates in the initial steps of substrate metabolism. The corresponding genes of the monooxygenases were cloned, and the competent cells were transformed with these recombinant plasmids. Although CphC-II and CphB were expressed as insoluble forms, CphC-I was successfully expressed as a soluble form and isolated by purification. The specific activity of the purified CphC-I was analyzed by using 4-CP, 4-chlorocatechol (4-CC), and catechol (CAT) as substrates. The specific activities for 4-CP, 4-CC, and CAT were determined to be 0.312 U/mg, 0.462 U/mg, 0.246 U/mg, respectively. The results of this study indicated that CphC-I is able to catalyze the degradation of 4-CC and CAT in addition to 4-CP, which is a primary substrate. This research is expected to provide the fundamental information for the development of an eco-friendly biochemical degradation of aromatic hydrocarbons.

Two Different Pathways (a Chlorocatechol and a Hydroquinone Pathway) for the 4-Chlorophenol Degradation in Two Isolated Bacterial Strains

  • Bae, Hee-Sung;Rhee, Sung-Keun;Cho, Young-Gyun;Hong, Jong-Ki;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권4호
    • /
    • pp.237-241
    • /
    • 1997
  • Two isolated strains, Comamonas testosteroni CPW301 and Arthrobacter ureafaciens CPR706, were able to use 4-chlorophenol (4-CP) as a sole carbon and energy source. CPW301 was found to degrade 4-CP via a meta-cleavage pathway in which the chloro-substituent was eliminated even when 4-chlorocatechol was cleaved by the catechol 2, 3-dioxygenase. In contrast, CPR706 removed chloride from 4-CP prior to the ring-fission reaction, producing hydroquinone as a transient intermediate during 4-CP degradation. CPR706 exhibited much higher tolerance for 4-CP than CPW301, which was indicated by the maximum degradable concentration and degradation rate.

  • PDF

자외선 펜톤산화공정에 의한 수중 3-염화페놀 분해특성 및 분해경로 연구 (Degradation of 3-Chlorophenol by a Ultraviolet-Fenton Process: Parameters and Degradation Pathways)

  • 김일규
    • 한국환경과학회지
    • /
    • 제22권9호
    • /
    • pp.1089-1095
    • /
    • 2013
  • The degradation of 3-chlorophenol(3-CP) by various AOPs(Advanced Oxidation Processes) including the ultraviolet / hydrogen peroxide, the Fenton and the ultraviolet(UV)-Fenton process has been conducted. The highest removal efficiency for 3-CP in the aqueous phase was obtained by the UV-Fenton process among the AOPs. In the UV-Fenton process, The removal efficiency of 3-CP decreased with increasing pH in the range of 3 to 6, and it decreased with increasing initial concentration. As the intermediates of 3-CP by UV-Fenton reaction, 3-chlorocatechol, 4-chlorocatechol, and chlorohydroquinone were detected thus the degradation pathways were proposed.

Chlorobenzene 및 Chlorinated Phenol류의 분해에 미치는 초음파의 응용 (Application of Ultrasounds for the Removal of Chlorobenzene and Chlorinated Phenols in Water)

  • 우영억;황규탁
    • 환경위생공학
    • /
    • 제15권4호
    • /
    • pp.35-43
    • /
    • 2000
  • Aqueous solutions of chlorobenzene and chlorinated phenols were exposed to 200kHz ultrasound with a power of $6.0W/\textrm{cm}^2$ per unit volume on sonochemical reactor under ambient temperature and pressure conditions. The concentration of chlorobenzene and chlorinated phenols decreased with ultrasound, indicating first-order kinetics. Degradation rate constants are calculated from the slope of plots. The order of the rate constants is as follows : 2-chlorphenol(2-CP)$\leq$ 4-chlorophenol(4-CP)<3-chlorophenol(3-CP)$5.63~9.96({\times}10^{-2})min^{-1}$ under argon. The degradation was suppressed by the addition of t-BuOH and the suppressed yield was agreed with their reactivity for hydroxy radical. The main products of these systems were formic acid, acetic acid, small amount of methane and inorganic carbon forms as carbon dioxide, carbon monoxide in sonolysis of chlorinated phenols, and also these results agreed with change of TOC.

  • PDF