• 제목/요약/키워드: chip formation

검색결과 239건 처리시간 0.04초

칩브레이커 형상변수에 의한 칩유동각 예측 (The Prediction of Chip Flow Angle on Chip Breaker Shape Parameters)

  • 박승근
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.381-386
    • /
    • 1999
  • In machining with cutting tool inserts having complex chip groove shape, the flow, curl and breaking patterns of the chip are different than in flat-face type inserts. In the present work, an effort is made to understand the three basic phenomena occurring in a chip since its formation in machining with groove type and pattern type inserts. These are the initial chip flow, the subsequent development of up and side curl and the final chip breaking due to the development of torsional and banding stresses. In this paper, chip flow angle in a groove type and pattern type inserts. The expression for chip flow angle in groove type and pattern type insets is also verified experimentally using high speed filming techniques.

  • PDF

절삭력에 의한 칩의 형상분류와 칩형상 예측 (The Prediction and Classification of the Chip Fomation using Cutting Force)

  • 최원식
    • 한국생산제조학회지
    • /
    • 제7권2호
    • /
    • pp.40-46
    • /
    • 1998
  • In order to achieve high flexibility in manufacture, chip control is one of the most serious problems at present. The continuous type chip (uncontrolled chip), which interrupts the normal cutting process and damages the operator, tool and workpiece have a higher force ratio. while the controlled chip which is 6 or 9 type and C type, has the values of the force ratio below 0.6 The chips were classified by 4 types. in chip formation and by described chip history during the cutting process. Finally, the feasibility of utilizing force ratios in chip control will be pointed out while comparing generated force signals during the cutting process.

  • PDF

칩브레이크 선정을 위한 Taguchi 방법의 적용 (Application of Taguchi Method for the Selection of Chip Breaker)

  • 전준용
    • 한국생산제조학회지
    • /
    • 제7권3호
    • /
    • pp.118-125
    • /
    • 1998
  • Chip control is a major problem in automatic machining process, especially in finish turning operation. In this case, chip breaker is one of the important factors to be determined. As unbroken chips are grown. these deteriorate the surface roughness. and proces automation can not be carried out. In this study to get rid of chip curling problem while turning internal hole. optimal chip breaker is selected from the experiment. The experiment is planned with Taguchi's method that is based on the orthogonal arrary of design factors. From the response table. cutting speed, feedrate, depth of cut and tool geometry turn to be major factors affecting chip formation. Then, optimal chip breaker is selected. and this is verified as good enough for chip control from the experiment.

  • PDF

실험적 방법에 기초한 칩브레이크 선정 (Selection of chip breaker based on the experiment)

  • 전준용;허만성;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.271-275
    • /
    • 1995
  • Chip control is a major problem in automatic machining process, especially in finish operation. Chip breaker is one of the important factors to be determined for the scheme of chip control. As unbroken chips are grown, there deteriorate quality of the surface roughness and process automation can be carried out. In this study, to get rid of chip curling problem while turning internal hole, optimal chip breaker is selected form the experiment. The experiment is planned with Taguchi's method that is based on the orthogonal arrary of design factor. From the respose table, cutting speed, feedrate, depth of cut, and tool geometry are major factors affecting chip formation. Then, optmal chip breaker is selected and this is verified good enough for chip control from the experiment.

  • PDF

금속절삭시 CHIP 생성기구 및 절삭온도 예측을 위한 유한요소해석에 관한 연구

  • 황준;남궁석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.22-27
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting. This paper introduces some effects, such constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angles and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool, cutting temperature. Under the usual [lane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and rake angles. In this analysis, various cutting speeds and depth of cut are adopted. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Cutting temperature and Thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

패턴인식 기술에 의한 칩형태 판별 (Chip type discrimination by pattern recognition technique)

  • 강종표;최만성;송지복
    • 한국정밀공학회지
    • /
    • 제5권4호
    • /
    • pp.32-38
    • /
    • 1988
  • Apaptive cintrol of machine tool is aimed to change cutting state satis- factorily without aid of a machine operator, if the cuting state is abnomal such as formation of tangled ribbon type chip, built-up edge and generation of chattering and so on. Among these the recognition of chip type is one of the most important since it has imlications relate to : 1. Safety of operator 2. Stoppage of work due to entanglment in tool and workpiece of chip 3. Problem of producted chip control In this paper the chip type is discriminatied by the pattern recognition technique. It is found that the power spectrum of cutting force for each chip type has it's own special pattern. Linear discriminant function for the recognition of the chip type is obtained by learning process. The discriminant function can be the basis of adaptive control for the rate of success of recognition by pattern recognition technique is at leasthigher than 83%.

  • PDF

칩 스택 패키지용 Sn 관통-실리콘-비아 형성공정 및 접속공정 (Formation of Sn Through-Silicon-Via and Its Interconnection Process for Chip Stack Packages)

  • 김민영;오택수;오태성
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.557-564
    • /
    • 2010
  • Formation of Sn through-silicon-via (TSV) and its interconnection processes were studied in order to form a three-dimensional interconnection structure of chip-stack packages. Different from the conventional formation of Cu TSVs, which require a complicated Cu electroplating process, Sn TSVs can be formed easily by Sn electroplating and reflow. Sn via-filling behavior did not depend on the shape of the Sn electroplated layer, allowing a much wider process window for the formation of Sn TSVs compared to the conventional Cu TSV process. Interlocking joints were processed by intercalation of Cu bumps into Sn vias to form interconnections between chips with Sn TSVs, and the mechanical integrity of the interlocking joints was evaluated with a die shear test.

반도체 패키지의 칩셋과 다른 설계변수와의 연관성 평가 (Estimate on related to Chip Set and the other Various Parameter in Electronic Plastic Package)

  • 권용수
    • 한국산업융합학회 논문집
    • /
    • 제2권2호
    • /
    • pp.131-137
    • /
    • 1999
  • Package crack caused by the soldering process in the surface mounting plastic package is evaluated by applying the energy release rate criterion. The package crack formation depend on various parameters such as chip set, chip size, package thickness, package width, material properties and the moisture content etc. The effects of chip set and the other parameters were estimated during the analysis of package cracks which were located in the edge of the upper interface of the chip and the lower interlace of the die pad. From the results, it could be obtained that the more significant parameters to effect the chip set are chip width.

  • PDF

Self-Assembling Adhesive Bonding by Using Fusible Alloy Paste for Microelectronics Packaging

  • Yasuda, Kiyokazu
    • 마이크로전자및패키징학회지
    • /
    • 제18권3호
    • /
    • pp.53-57
    • /
    • 2011
  • In the modern packaging technologies highly condensed metal interconnects are typically formed by highcost processes. These methods inevitably require the precise controls of mutually dependant process parameters, which usually cause the difficulty of the change in the layout design for interconnects of chip to-chip, or chip-to-substrate. In order to overcome these problems, the unique concept and methodology of self-assembly even in micro-meter scale were developed. In this report we focus on the factors which influenced the self-formed bumps by analyzing the phenomenon experimentally. In case of RMA flux, homogenous pattern was obtained in both plain surface and cross-section surface observation. By using RA flux, the phenomena were accelerated although the self-formtion results was inhomogenous. With ussage of moderate RA flux, reaction rate of the self-formation was accelerated with homogeneous pattern.