• Title/Summary/Keyword: chicken sperm

Search Result 31, Processing Time 0.022 seconds

5-Aminolevulinic acid improves chicken sperm motility

  • Taniguchi, Shin;Zhu, Zhendong;Matsuzaki, Mei;Tsudzuki, Masaoki;Maeda, Teruo
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.1912-1920
    • /
    • 2021
  • Objective: This study investigated the effects of 5-aminolevulinic acid (5-ALA) on the motility parameters, mitochondrial membrane depolarization, and ATP levels in chicken sperm. Methods: The pooled semen from Barred Plymouth Rock males was used. In the first experiment, the semen was diluted 4-times with phosphate-buffered saline (PBS (-)) containing various concentrations (0, 0.01, 0.05, and 0.1 mM) of 5-ALA, and then the sperm motility parameters after incubation were evaluated by computer-assisted sperm analysis (CASA). In the second experiment, the semen was diluted 4-times with PBS (-) containing 0.05 mM 5-ALA, and then sperm mitochondrial membrane depolarization and ATP levels after 1.5 h of incubation were analyzed with the MitoPT® JC-1 Assay and ATP Assay kits, respectively. In the third experiment, the semen was removed from the seminal plasma and resuspended with the mediums of PBS (-), PBS (-) supplemented with CaCl2 and MgCl2 (PBS (+)) + 5-ALA, PBS (+) + caffeine, and PBS (+) + caffeine + 5-ALA. Then, the sperm motility parameters after incubation were evaluated by CASA. In the last experiment, the semen was treated with the mediums of PBS (-), PBS (-) + 5-ALA, 5.7% glucose, 5.7% glucose + 5-ALA after removing the seminal plasma, and then the sperm motility parameters were evaluated by CASA. Results: The addition of 0.05 mM 5-ALA significantly increased the chicken sperm motility, progressive motility, linearity, average path velocity, curvilinear velocity, straight-line velocity, and the wobble. The sperm mitochondrial membrane depolarization was also increased by the 5-ALA treatment. The 5-ALA treatment decreased the sperm ATP levels. Both the caffeine treatment and glucose treatment decreased the sperm motility during incubation period. Conclusion: 5-ALA might increase sperm mitochondrial membrane depolarization to utilize the ATP for enhancing sperm movement.

Morphometric Study of Seminiferous Tubules in Pigeon, Pheasant, and Chicken (비둘기, 꿩 및 닭의 곱슬정세관에 관한 형태계측학적 연구)

  • 김인식;김지현;이영훈;정옥봉;양홍현
    • Korean Journal of Poultry Science
    • /
    • v.27 no.1
    • /
    • pp.63-71
    • /
    • 2000
  • The testis is an extremely heterogeneous organ, containing numerous compartments types. Morphometric studies were performed of 3 avian species (pigeon, pheasant and chicken) to determine volume density absolute volume, numerical density, total number of serminiferous tubule components, and sperm production, especially those related to the Sertoli cell, and to make comparisons among the species. Volume density of seminiferous tubule components per testis was determined by point counting method. Testis volume and sperm production were measured by routine techniques. Numerical density (the number of cells per unit volume of testis) of seminiferous tubule components per testis was determined by morphometry (Floderus method). The volume density of seminiferous tubules per testis was 91.58, 92.18 and 94.21% in pigeon, pheasant, and chicken, respectively. The volume density of spermatogonium, spermatocyte, spermatid, spermatozoon, and Sertoli cell did not produce significant changes in the three species. The absolute volume of spermatogonium, spermatocyte, spermatid, and Sertoli cell showed significant changes in the three species (p<0.05). The average volume of Sertoli cell ranged from 758.34(pheasant) to 1,212.9 ㎛$^3$(chicken) and was not significantoy different in the three species(p>0.05). The number of Sertoli cells per testis showed significant differences in the three species : 34.52 $\times$10(sup)6, 186.82$\times$10(sup)6, 810.62$\times$10(sup)6 in pigeon, pheasant, and chicken, respectively(p<0.05). The sperm production was significantly different in the three species : 3,018$\times$10(sup)6, 993.9$\times$10(sup)6, and 8.9$\times$10(sup)6 in chicken, pheasant, and pigeon, respectively(p<0.05). These results suggest that number of Sertoli cells may be more important than Sertoli cell size in explaining the difference in sperm production among the three species.

  • PDF

Cracking Hen's Egg for Transgenesis, without Cracking Them (정자에 의한 외래 DNA의 계란내 도입: 유전자 변환 닭 생산을 위한 장애 극복)

  • 이기석;김기동;이상호
    • Korean Journal of Poultry Science
    • /
    • v.26 no.2
    • /
    • pp.109-118
    • /
    • 1999
  • Hen's eggs have been regarded as one of the best animal bioreactors to produce biologically active peptides originated from many organisms including human. Despite the last decade's efforts to produce transgenic chicken for any commercial purposes, the results so far reported are very disappointing, indicating that hen's eggs are very difficult to crack for transgenesis. Comparatively large female gamete with enormous amount of yolk may be one of the major obstacles in achieving a similar feat to those of other vertebrate species including mouse, sheep, fish and frog. The delay or less efficiency evidenced may instruct to try an alternative way of gens transfer into chicken egg. Sperm-mediated gene transfer is one of them, and may require a great deal of understanding of mechanisms involved in early fertilization and embryonic development. In other animals where the technique was successful, basic mechanisms have been well studied and established only by painstaking efforts for decades. This paper discusses the accumulated knowledge on early fertilization mechanism in the chicken and how can this information be utilitzed to find the alternative gene transfer in making transgenic chicken.

  • PDF

Effects of Liquid Rooster Sperm on Reproductive Ability in Chicken (정액의 액상보존이 닭의 정액성상 및 수정율에 미치는 영향)

  • 김학규;나재천;최철환;장병귀;상병돈;이상진;한만희;박창식;이규승
    • Korean Journal of Poultry Science
    • /
    • v.30 no.2
    • /
    • pp.129-134
    • /
    • 2003
  • This study was conducted to investigate the effects of liquid rooster semen on reproductive ability in chicken. Raw and diluted semens were stored at 5$^{\circ}C$ cold temperature for 6, 30, and 54 hours after semen collection. There was no statistically difference in sperm motility throughout the 6 hours period of storage among raw semen and diluted semen groups with skim milk glucose solution (SM), egg yolk glucose solution (EY), and saline. But there was decrease in those throughout the period of 30 and 54 hours of storage. Sperm motility and normal sperm for the period of 30 and 54 hours of storage were significantly better in SM and EY diluted groups (P<0.05). Fertilization rates of rooster semen diluted with SM were 90.77, 87.70, and 59.46% for 6, 30, and 54 hours stored groups, respectively, those proved to be higher in SM-diluted group than other groups.

Enhancement of cryopreserved rooster semen and fertility potential after oral administration of Thai ginger (Kaempferia parviflora) extract in Thai native chickens

  • Vibuntita Chankitisakul;Supakorn Authaida;Wuttigrai Boonkum;Sarunya Tuntiyasawasdikul
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1177-1184
    • /
    • 2024
  • Objective: Semen cryopreservation is an effective method of preserving genetic material, particularly in native chicken breeds facing a substantial decline. In this study, we evaluated the quality of frozen/thawed rooster semen treated with different concentrations of oral administrations of black ginger (Kaempferia parviflora: KP) extract and determined its fertility. Methods: Thirty-two Thai native roosters (Pradu Hang Dum, 42 weeks old) were used in this study. The treatments were classified into four groups according to the concentration of KP extract administered to the roosters: 0, 100, 150, and 200 mg/kg body weight. The quality of fresh semen was analyzed before cryopreservation. Post-thaw sperm quality and fertility potential were determined. Also, lipid peroxidation was determined. Results: The results showed that sperm concentration and movement increased in roosters treated with 200 mg/kg of KP extract (p<0.05). The malondialdehyde (MDA) in the roosters receiving 200 mg/kg KP extract was lower than that in the other but had an insignificant difference within the KP treatment groups (p>0.05). The highest MDA levels were observed in the control group (p<0.05). The percentage of motile sperm (total motility and progressive motility) after semen thawing was higher in roosters that received 150 and 200 mg/kg KP extract than in those that received 100 mg/kg KP extract and the control (p<0.05). MDA levels decreased significantly in roosters that received 150 and 200 mg/kg KP extract than in those that received 100 mg/kg KP extract and the control (p<0.05). Fertility and hatchability were greater in the KP150 and KP200 groups than in the KP100 and control groups (p<0.05). Conclusion: The optimal amount of KP extract influencing initial sperm quality was determined to be 200 mg/kg. However, 150 mg/kg was the optimal low dosage of KP extract administration that maintained sperm quality and fertility following semen cryopreservation.

The Study of Estimation of Chromatin Abnormality of Ogye Rooster Sperm and Activity by Diff-Quik Staining Method (Diff-Quik 염색방법에 의한 오계 닭 정자의 염색질 이상과 운동성 추정에 관한 연구)

  • Kim, Sung Woo;Choi, Ahreum;Choe, Changyong;Kim, Dongkyo;Seong, Hwan-Hoo;Kim, Jae-Hwan;Kim, Chongdae
    • Korean Journal of Poultry Science
    • /
    • v.42 no.2
    • /
    • pp.109-116
    • /
    • 2015
  • Ogye rooster sperm chromatin status can be detected using well established sperm assays. In this paper, a simple and fast method to monitor rooster sperm chromatin status could be employed in field for assessment of chicken sperm quality. Using standard bright field microscope, Diff-Quik stains can be reproducibly, easily and routinely monitored with simple staining. The presence of abnormal chromatin staining of rooster sperm was determined by darker stain in head. In the fresh semen, the viabilities of three tested Ogye spermatozoa were 93.53%, 82.42% and 90.63% and normal chromatin rates were 87.96%, 74.25% and 85.10% respectively. However, after freezing, the rates of viability of thawed semen were reduced to 69.58%, 61.98% and 72.20% and normal chromatin rate also reduced to 58.91%, 48.49% and 63.34%. A significant correlation between live sperm and normal sperm nuclei was 0.875 in fresh semen and 0.513 in frozen semen. After incubation of sperm at $37^{\circ}C$ for 5min, the rates of viability, chromatin normality and sperm head activity were shown as $90.63{\pm}1.28%$, $82.44{\pm}8.09%$ and $66.68{\pm}10.29%$ in fresh semen. However, the rates of thawed semen were reduced to $67.92{\pm}7.55%$, $56.92{\pm}12.15%$ and 47.32{\pm}5.02%, respectively. The relationship between chromatin normality and sperm head movements in fresh and thawed semen were 0.564 and 0.540, respectively. With these results, the chicken sperm normality could be assessed by the Diff-Quik staining that could be used for chromatin status of sperm head and activated morphology of live spermatozoa, as a simple and rapid staining method.

Effects of Semen Characteristics and Egg Storage Period on Hatchability in Korean Native Chickens (재래닭의 정액성상 및 종란보관기간이 부화율에 미치는 영향)

  • 김학규;최철환;나재천;상병돈;장병귀;송치은;정행기;이상진;하정기
    • Korean Journal of Poultry Science
    • /
    • v.27 no.1
    • /
    • pp.79-84
    • /
    • 2000
  • This study was carried out to investigate the characteristics of semen and egg storage period on hatchability of Korean native chicken(KNC, 44-wk old). The body weight, volume of semen, concentration of spermatozoa, total sperm of an ejaculate, motility of sperm and percentage of fertile eggs were 2,555.89g, 0.473$m\ell$, 30.81${\times}$10(sup)8/$m\ell$, 13.14${\times}$10(sup)8 cells, 3.58 and 91.69%, respectively, in KNC. The percentage of fertile eggs were 87.9∼96.0% on storage period in KNC. The viability and hatchability were 80.2%. 74.6%, respectively, in storage period for 22 days in storage temperature of 11∼14$^{\circ}C$. The results of the trial show that viability can be get more than 80% in storage period for 3 weeks in storage temperature of about 13$^{\circ}C$.

  • PDF

Cock Spermatozoa Serve as the Gene Vector for Generation of ransgenic Chicken (Gallus gallus)

  • Yang, C.C.;Chang, H.S.;Lin, C.J.;Hsu, C.C.;Cheung, J.I.;Hwu, L.;Cheng, W.T.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.7
    • /
    • pp.885-891
    • /
    • 2004
  • To evaluate the feasibility of using sperm-mediated gene transfer (SMGT) for carrying foreign gene into chicken oocyte, a reporter gene, CX-EGFP, was used in this study. The reporter gene was first mixed with liposome or liposome-like compound and the mixtures were further combined with ejaculated cock spermatozoa. The spermatozoa treated with liposome and CX-EGFP mixture was subsequently coincubated with DNaseI to remove the extra DNA which insured the authenticity of positive signals. The treated sperms were then subjected to transgene (reporter gene) existence analysis and artificial insemination of laying hens. Obtained results indicated that the spermatozoa were able to take-in the foreign DNA; which was confirmed by polymerase chain reaction and Southern blot analysis. In the following experiment, fresh ejaculated sperms were mixed with CX-EGFP-liposome or CX-EGFP-liposome-like complex then used for artificial insemination of each of six laying hens. Eggs laid between day-3 and day-7 post insemination were collected. Newly hatched chicks, two out of 53 from CX-EGFP/liposome treated group and two out of 21 from CXEGFP/liposome-like treated group, were proven to be transgenic. This study suggests that SMGT is a powerful method for generating transgenic chickens.

Possible Abnormalities of Chimeric Chicken Caused by the Introduction of Exogenous Genes Into Chicken Embryos via Primordial Germ Cells (PGCs)

  • Ebara, Fumio;Fujihara, Noboru
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1514-1517
    • /
    • 2000
  • In chicken, exogenous genes introduced into germinal crescent region (GCR) of the early developmental stage, where primordial germ cells (PGCs) were concentrated, were successfully transferred to the gonads via PGCs. The foreign genes were also confirmed to be successfully incorporated into F1 and F2 generations. We tried to incorporate the exogenous genes into PGCs by lipofection, then the DNA mixture was injected into GCR at stage 3-5 or 9-11 of embryonic development (Hamburger and Hamilton, 1951). The manipulated eggs were incubated, and hatched chicks were reared until sexual maturation. F1 generation was obtained from the DNA-treated chicken (DNA-chicken) mated with normal birds. Furthermore, F2 generation was also obtained from the F1 chicken mated with normal birds. The transfer of introduced foreign genes were confirmed by marker gene detection methods and PCR analysis in the hatched chicks, F1 and F2 generations. However, in our experiments, DNA-chickens showed abnormal characteristics such as low egg production rate, abnormal appearance and decreased number of spermatozoa. In the case of F1 chicken, low egg production and the deterioration of sperm capacity for insemination in male chicken were observed.

Evaluation of rooster semen quality using CBB dye based staining method

  • Kim, Sung Woo;Lee, Jae-Yeong;Kim, Chan-Lan;Ko, Yeong Gyu;Kim, Bongki
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.55-61
    • /
    • 2022
  • The acrosome cap allows sperm to penetrate the egg membrane and produce male pronuclei within female chicken eggs, facilitating successful fertilization. Given this, it is important to establish practical methods for evaluating the integrity of the acrosome cap and thus the quality of the rooster's sperm. There are several established methods for evaluating the acrosomes of mammalian sperm, but none of these methods are suitable for evaluating the acrosome status of rooster spermatozoa. Therefore, a simplified method for evaluating the rooster acrosome is needed. Here we evaluated the usefulness of CBB (coomassie brilliant blue) staining of the acrosome at concentrations of 0.04%, 0.08%, and 0.3% CBB solutions. Our data revealed a clear staining pattern for intact acrosome caps at 0.04% and 0.08% CBB but not at 0.3% CBB. This protocol revealed differences in acrosome integrity between fresh and frozen rooster sperm smears suggesting that CBB staining may facilitate easier semen evaluation in roosters. This protocol allows for the accurate differential staining of acrosome cap in rooster spermatozoa.