• Title/Summary/Keyword: chemical stability

Search Result 3,499, Processing Time 0.034 seconds

Research on the Rheological Properties of Aqueous Film Forming Foam to Respond to Ship Oil Fires (함정 유류화재 대응을 위한 수성막포의 유변학적 특성 연구)

  • Kil-Song Jeon;Hwi-Seong Kim;Jung-Hoon You;Yong-Ho Yoo;Jin-Ouk Park
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.603-607
    • /
    • 2023
  • Aqueous film forming foam (AFFF) is a critical fire suppression agent used in combating hydrocarbon fires. This type of fire suppressant is highly effective due to its ability to form a protective film, dissipate heat, inhibit combustion, and utilize a blend of chemical substances to extinguish fires. While these properties offer significant advantages in responding to hydrocarbon fires, AFFF is distinct in its deployment as it is dispensed in the form of foam. Therefore, the rheological analysis of AFFF foam using a rheometer plays a crucial role in predicting the spray characteristics of AFFF for combating hydrocarbon fires, and this is closely associated with effective fire suppression. In this study, we conducted rheometer experiments to confirm the non-Newtonian behavior (shear-thinning) of AFFF foam and obtained data on the form's stability. These experimental data are expected to contribute to enhancing the efficiency of fire suppression systems utilizing AFFF.

Development of Functional Halogenated Phenylpyrrole Derivatives (기능성 할로겐화 페닐피롤 )

  • Min-Hee Jung;Hee Jeong Kong;Young-Ok Kim;Jin-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.842-850
    • /
    • 2023
  • Pyrrolnitrin, pyrrolomycin, and pyoluteorin are functional halogenated phenylpyrrole derivatives (HPDs) derived from microorganisms with diverse antimicrobial activities. Pyrrolnitrin is a secondary metabolite produced from L-tryptophan through four-step reactions in Pseudomonas fluorescens, Burkholderia cepacia, Serratia plymuthica, etc. It is currently used for the treatment of superficial dermatophytic fungal infections, has high antagonistic activities against soil-borne and foliar fungal infections, and has many industrial applications. Since pyrrolnitrin is easily decomposed by light, it is difficult to widely use it outdoors. As an alternative, fludioxonil, a synthetically produced non-systemic surface fungicide that is structurally similar and has excellent light stability, has been commercialized for seed and foliar treatment of plants. However, due to its high toxicity to aquatic organisms and adverse effects in human cell lines, many countries have established maximum residue levels and strictly control its levels. Pyrrolomycin and pyoluteorin, which have antibiotic/antibiofilm activity against Gram-positive bacteria and high anti-oomycete activity against the plant pathogen Pythium ultimum, respectively, were isolated and identified from microorganisms. This review summarizes the biosynthesis and production of natural pyrrolnitrin derived from bacteria and the characteristics of synthetic fludioxonil and other natural phenylpyrrole derivatives among the HPDs. We expect that a plethora of highly effective, novel HPDs that are safe for humans and environments will be developed through the generation of an HPD library by microbial biosynthesis and chemical synthesis.

Application of Micro Porous Layer (MPL) for Enhance of Electrode Performance in Phosphoric Acid Fuel Cells (PAFCs) (인산형 연료전지(PAFC)의 전극 성능 향상을 위한 미세다공층(MPL)의 적용)

  • Jihun Ha;Sungmin Kang;You-Kwan Oh;Dong-Hyun Peck
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • The key components of a Phosphoric acid fuel cell (PAFC) are an electrode catalyst, an electrolyte matrix and a gas diffusion layer (GDL). In this study, we introduced a microporous layer on the GDL of PAFC to enhance liquid electrolyte management and overall electrochemical performance of PAFC. MPL is primarily used in polymer electrolyte membrane fuel cells to serve as an intermediate buffer layer, effectively managing water within the electrode and reducing contact resistance. In this study, electrodes were fabricated using GDLs with and without MPL to examine the influence of MPL on the performance of PAFC. Internal resistance and polarization curves of the unit cell were measured and compared to each other to assess the impact of MPL on PAFC electrode performance. As the results, the application of MPL improved power density from 170.2 to 192.1 mW/cm2. MPL effectively managed electrolyte and water within the matrix and electrode, enhancing stability. Furthermore, the application of MPL reduced internal resistance in the electrode, resulting in sustained and stable performance even during long-term operation.

Mechanical Properties of Fiber-reinforced Cement Composites according to a Multi-walled Carbon Nanotube Dispersion Method (다중벽 탄소나노튜브의 분산방법에 따른 섬유보강 시멘트복합체의 역학적 특성)

  • Kim, Moon-Kyu;Kim, Gyu-Yong;Pyeon, Su-Jeong;Choi, Byung-Cheol;Lee, Yae-Chan;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.203-213
    • /
    • 2024
  • This study delves into the mechanical properties of fiber-reinforced cement composites(FRCC) concerning the dispersion method of multi-walled carbon nanotubes(MWCNTs). MWCNTs find utility in industrial applications, particularly in magnetic sensing and crack detection, owing to their diverse properties including heat resistance and chemical stability. However, current research endeavors are increasingly directed towards leveraging the electrical properties of MWCNTs for self-sensing and smart sensor development. Notably, achieving uniform dispersion of MWCNTs poses a challenge due to variations in researchers' skills and equipment, with excessive dispersion potentially leading to deterioration in mechanical performance. To address these challenges, this study employs ultrasonic dispersion for a defined duration along with PCE surfactant, known for its efficacy in dispersion. Test specimens of FRCC are prepared and subjected to strength, drawing, and direct tensile tests to evaluate their mechanical properties. Additionally, the influence of MWCNT dispersion efficiency on the enhancement of FRCC mechanical performance is scrutinized across different dispersion methods.

Necessity of Quality Control for Aviation Fuel(Jet A-1) to Secure Aviation Safety (항공안전 확보를 위한 항공유(Jet A-1) 품질관리 필요성)

  • Junbeom Heo;Yumi Kang;Heejin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.194-199
    • /
    • 2024
  • Accidents due to aircraft fuel defects rank in the top 13 of the 34 accident types described by CAST-ICAO Common Taxonomy Team(CICTT). Aircraft accidents occur because of the inflow of moisture or pollutants depending on the distribution process and storage environment. To confirm the change in physical properties of the aircraft oil stored for a long time, we stored JET A-1 aircraft oil in a metal can to observe the change after six months. We confirmed that the aircraft oil stored for a long time satisfied the quality standards, and the stability of the fuel oil was high. However, in scenarios in which aircraft oil is stored separately on ships, onshore storage facilities, oil fields, etc., owing to the nature of missions, such as in marine police aircraft, the inflow of moisture or pollutants may likely occur due to changes in the internal and external environment. In addition, pollutants can be analyzed using existing tests and distillation properties, but for moisture, domestic and international standards and domestic laws determine the moisture separation ability of aircraft oil through the water separation index, but the moisture content is not analyzed. Therefore, aviation safety must be secured by adding quality control standards for moisture content and performing revisions to uniformize domestic and international standards and laws.

Partial Oxidation of Methane to $H_2$ Over Pd/Ti-SPK and Pd/Zr-SPK Catalysts and Characterization (Pd/Ti-SPK과 Pd/Zr-SPK 촉매상에서 수소 생산을 위한 메탄의 부분산화반응과 촉매의 특성화)

  • Seo, Ho-Joon;Kang, Ung-Il
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.648-652
    • /
    • 2010
  • Catalytic activities of the partial oxidation of methane (POM) to hydrogen were investigated over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK in a fixed bed flow reactor (FBFR) under atmosphere, and the catalysts were characterized by BET, XPS, XRD. The BET surface areas, pore volume and pore width of Horvath-Kawaze, micro pore area and volume of t-plot of Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were $284m^2/g$, $0.233cm^3/g$, 3.9 nm, $30m^2/g$, $0.015cm^3/g$ and $396m^2/g$, $0.324cm^3/g$, 3.7nm, $119m^2/g$, $0.055cm^3/g$, repectively. The nitrogen adsorption isotherms were type IV with hysteresis. XPS showed that Si 2p and O 1s core electronlevels of Ti-SPK and Zr-SPK substituted Ti and Zr shifted to slightly lower binding energies than SPK. The oxidation states of Pd on the surface of catalysts were $Pd^0$ and $Pd^{+2}$. XRD patterns showed that crystal structures of fresh catalyst changed amorphous into crystal phase after reaction. The conversion and selectivity of POM to hydrogen over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were 77, 84% and 78, 72%, respectively, at 973 K, $CH_4/O_2$ = 2, GHSV = $8.4{\times}10^4mL/g_{cat}{\cdot}h$ and were kept constant even after 3 days in stream. These results confirm superior activity, thermal stability, and physicochemical properties of catalyst in POM to hydrogen.

Evaluation of the Nutrient Removal Performance of the Pilot-scale KNR (Kwon's Nutrient Removal) System with Dual Sludge for Small Sewage Treatment (소규모 하수처리를 위한 파일럿 규모 이중슬러지 KNR® (Kwon's nutrient removal) 시스템의 영얌염류 제거성능 평가)

  • An, Jin-Young;Kwon, Joong-Chun;Kim, Yun-Hak;Jeng, Yoo-Hoon;Kim, Doo-Eon;Ryu, Sun-Ho;Kim, Byung-Woo
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.67-77
    • /
    • 2006
  • A simple dual sludge process, called as $KNR^{(R)}$ (Kwon's Nutrient Removal) system, was developed for small sewage treatment. It is a hybrid system that consists of an UMBR (Upflow multi-layer bioreactor) as anaerobic and anoxic reactor with suspended denitrifier and a post aerobic biofilm reactor, filled with pellet-like media, with attached nitrifier. To evaluate the stability and performance of this system for small sewage treatment, the pilot-scale $KNR^{(R)}$ plant with a treatment capacity of $50m^3/d$ was practically applied to the actual sewage treatment plant, which was under retrofit construction during pilot plant operation, with a capacity of $50m^3/d$ in a small rural community. The HRTs of a UMBR and a post aerobic biofilm reactor were about 4.7 h and 7.2 h, respectively. The temperature in the reactor varied from $18.1^{\circ}C$ to $28.1^{\circ}C$. The pilot plant showed stable performance even though the pilot plant had been the severe fluctuation of influent flow rate and BOD/N ratio. During a whole period of this study, average concentrations of $COD_{cr}$, $COD_{Mn}$, $BOD_5$, TN, and TP in the final effluent obtained from this system were 11.0 mg/L, 8.8 mg/L, 4.2 mg/L, 3.5 mg/L, 9.8 mg/L, and 0.87/0.17 mg/L (with/without poly aluminium chloride(PAC)), which corresponded to a removal efficiency of 95.3%, 87.6%, 96.3%, 96.5%, 68.2%, and 55.4/90.3%, respectively. Excess sludge production rates were $0.026kg-DS/m^3$-sewage and 0.220 kg-DS/kg-BOD lower 1.9 to 3.8 times than those in activated sludge based system such as $A_2O$ and Bardenpho.

  • PDF

Investigating the Partial Substitution of Chicken Feather for Wood Fiber in the Production of Wood-based Fiberboard (목질 섬유판 제조에 있어 도계부산물인 닭털의 목섬유 부분적 대체화 탐색)

  • Yang, In;Park, Dae-Hak;Choi, Won-Sil;Oh, Sei Chang;Ahn, Dong-uk;Han, Gyu-Seong;Oh, Seung Won
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.577-584
    • /
    • 2018
  • This study was conducted to investigate the potential of chicken feather (CF), which is a by-product in poultry industry, as a partial substitute of wood fiber in the production of wood-based fiberboard. Keratin-type protein constituted the majority of CF, and its appearance did not differ from that of wood fiber. When the formaldehyde (HCHO) adsorptivities of CF compared by its pretreatment type, feather meal (FM), which was pretreated CF with high temperature and pressure and then grounded, showed the highest HCHO adsorptivity. In addition, there was no difference between the adsorbed HCHO amounts, which was measured by dinitrophenylhydrazine method, of scissors-chopped CF and CF beated with an electrical blender. Mechanical properties and HCHO emission of medium-density fiberboards (MDF), which were fabricated with wood fiber and 5 wt% CF, beated CF or FM based on the oven-dried weight of wood fiber, were not influenced by the pretreatment type of CF. However, when the values compared with those of MDF made with just wood fiber, thickness swelling and HCHO emission of the MDF were improved greatly with the addition of CF, beated CF or FM. Based on the results, it might be possible to produce MDF with improved dimensional stability and low HCHO emission if CF, beated CF or FM is added partially as a substitute of wood fiber in the manufacturing process of MDF produced with the conventional urea-formaldehyde resin of $E_1$ grade. However, the use of CF or FM in the production of MDF has a low economic feasibility at the current situation due to the securing difficulty and high cost of CF. In order to enhance the economic feasibility, it requires to use CF produced at small to medium-sized chicken meat plants. More importantly, it is considered that the technology developed from this research has a great potential to make provision for the prohibition of animal-based feed and to dispose environmentally avian influenza-infected poultry.

The Evaluation of Usefulness of Two Times Elution a Day of $^{99m}Tc$ Using $^{99}Mo$-$^{99m}Tc$ Generator ($^{99m}Tc$ 발생기의 24시간 내 2회 용출의 유용성 평가)

  • Kim, Jeong-Ho;Seo, Han-Kyung;Jeong, Yeong-Hwan;Kim, Yeong-Su;Kim, Byung-Cheol;Gwon, Yong-Ju;Lee, Jeong-Ok;Park, Yeong-Sun;Kim, Dong-Yun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.83-86
    • /
    • 2010
  • Purpose: The Molybdenum which is the raw material of $^{99}Mo$-$^{99m}Tc$ generator (generator) is produced from the nuclear reactor. However, output has dwindled as the two nuclear reactors supplying the bulk of radioactive material-one in Chalk River, Ontario and the other in Petten, the Netherlands-have been closed for repairs or maintenance. This resulted in the enhancement of its price. Therefore we have tried to seek the new method which could run generator to increase activity of $^{99m}Tc$ in this study. Materials and Methods: The $^{99m}Tc$ activity obtained from 5 times elution for 5 days from Monday to Friday using two generators was compared with 10 times elution. Appearance test, pH test, LAL test, sterility test, chemical impurity(Al) test, radio chemical purity test, ratio of $^{99}Mo$/$^{99m}Tc$ activity test have been done to check the stability of $^{99m}Tc$ eluting from generator respectively. Results: The $^{99m}Tc$ activity obtained from 5 times elution for 5 days was 168.2 GBq (4545 mCi) and 10 times was 230.5 GBq (6230 mCi). All quality control tests were within normal limit. Conclusion: We got to know that 2 times elution a day obtained more $^{99m}Tc$ activity than one time elution in this study.

  • PDF

Precessing of Smoked Dried and Powdered, Sardine for Instant Soup (정어리 분말수우프의 가공)

  • Oh, Kwang-Soo;Chung, Bu-Kil;Kim, Myung-Chan;Sung, Nak-Ju;Lee, Eung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.2
    • /
    • pp.149-157
    • /
    • 1988
  • This study was carried out to prepare the flavoring substance using sardine for instant soup, and to examine the taste compounds and storage stability of the product. In preparation of product, raw sardine are gutted, boiled for 10 minutes and smoked 3 times to $9{\sim}10%$ moisture content at $80^{\circ}C$ for 8 hours. The smoked-dried sardine meat were followed to be 50 mesh of particle size. The powdered-dried sardine were mixed 4.0% sugar, 20.0% table salt, 3.0% monosodium glutamate, 0.2% black pepper, 0.2% garlic powder and 0.2% onion powder, Finally the powdered instant soup product were vacuum packed in a laminated film(PET/A1 foil/CPP) bag, and then stored at room temperature for 120 days. The effect of smoking on enhancing flavor and on preventing lipid oxidation of product during storage were observed. From the chemical analysis and omission test, the principal taste compounds of product were IMP, 478.2mg/l00g; free amino acids such as glutamic acid, histidine, arginine, phenylalaine 3292.5mg/l00g; non-volatile organic acids such as lactic acid, ${\alpha}-ketoglutaric$ acid, 712.2mg/l00g; total creatinine 409.0mg/100g, and small amount of betaine, TMAO. Fatty acid composition of product were mainly consisted of polyenoic acids such as 20:5, 22:6, followed by saturated acids, monoenoic acid. The major fatty acid were 16:0, 16:1, 18:1, 20:5 and 22:6. From the results of sensory evaluation and chemical experiments during storage, the vacuum packed product were good condition for preserving the quality during storage for 120 days. We may conclude that the quality of present product was not inferior to that of seasoning powder of anchovy on the market, and it can be commercialized as a flavoring substance in preparing soup and broth.

  • PDF