DOI QR코드

DOI QR Code

Application of Micro Porous Layer (MPL) for Enhance of Electrode Performance in Phosphoric Acid Fuel Cells (PAFCs)

인산형 연료전지(PAFC)의 전극 성능 향상을 위한 미세다공층(MPL)의 적용

  • Jihun Ha (Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER)) ;
  • Sungmin Kang (Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER)) ;
  • You-Kwan Oh (School of Chemical Engineering, Pusan National University) ;
  • Dong-Hyun Peck (Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER))
  • 하지훈 (한국에너지기술연구원 울산차세대전지연구개발센터) ;
  • 강성민 (한국에너지기술연구원 울산차세대전지연구개발센터) ;
  • 오유관 (부산대학교 응용화학공학부) ;
  • 백동현 (한국에너지기술연구원 울산차세대전지연구개발센터)
  • Received : 2023.11.22
  • Accepted : 2024.01.15
  • Published : 2024.02.29

Abstract

The key components of a Phosphoric acid fuel cell (PAFC) are an electrode catalyst, an electrolyte matrix and a gas diffusion layer (GDL). In this study, we introduced a microporous layer on the GDL of PAFC to enhance liquid electrolyte management and overall electrochemical performance of PAFC. MPL is primarily used in polymer electrolyte membrane fuel cells to serve as an intermediate buffer layer, effectively managing water within the electrode and reducing contact resistance. In this study, electrodes were fabricated using GDLs with and without MPL to examine the influence of MPL on the performance of PAFC. Internal resistance and polarization curves of the unit cell were measured and compared to each other to assess the impact of MPL on PAFC electrode performance. As the results, the application of MPL improved power density from 170.2 to 192.1 mW/cm2. MPL effectively managed electrolyte and water within the matrix and electrode, enhancing stability. Furthermore, the application of MPL reduced internal resistance in the electrode, resulting in sustained and stable performance even during long-term operation.

인산형 연료전지(PAFC)의 전기화학적 성능에 영향을 미치는 핵심 부품은 전극 촉매, 전해질 매트릭스 및 기체확산층(GDL) 등이 있다. 또한 전극의 성능 향상을 위해 GDL 위에 미세다공층(MPL)을 적용하는 방법도 있다. MPL은 주로 고분자 전해질 연료전지(PEMFC)에서 전극 내부의 수분 관리와 접촉 저항 저감을 위한 중간 완화층 역할을 한다. 본 연구에서는 MPL이 PAFC 전극의 성능에 미치는 영향을 확인하기 위해 MPL이 없는 GDL과 MPL을 적용한 GDL로 전극을 제작하여 단위전지의 내부 저항과 분극 곡선을 서로 비교하였다. 본 실험 결과에서 MPL을 적용하였을 때 전극의 출력 밀도가 170.2 mW/cm2에서 192.1 mW/cm2으로 향상되었다. MPL은 PEMFC에서와 같이 PAFC 전극에서도 매트릭스와 전극에서 액체 전해질과 물 관리에 효과적으로 작용하고 전극 내부의 물질 전달이 향상되어 전극 성능이 향상된 것으로 판단된다. 또한, MPL의 적용으로 PAFC 전극의 내부 저항이 감소하였고 장기 운전시에도 안정적인 성능을 지속적으로 유지하는 결과로부터 PAFC 전극에도 MPL을 적용하면 전극 성능을 향상시킬 수 있음을 확인할 수 있었다.

Keywords

Acknowledgement

이 연구는 2023년도 산업통상자원부 및 산업기술평과관리원(KEIT) 연구비 지원에 의한 연구임(20020400).

References

  1. K. O. Yoro and M. O. Daramola, CO2 emission sources, greenhouse gases, and the global warming effect, In: Advances in Carbon Capture, pp. 3-28, Woodhead Publishing, Duxford (2020). 
  2. F. Wang, J. D. Harindintwali, Z. Yuan, M. Wang, F. Wang, S. Li, (...), and J. M. Chen, Technologies and perspectives for achieving carbon neutrality, The Innovation, 2(4), 100180 (2021). 
  3. S. H. An and J. Woo, Comparative economic analysis of RE100 implementation methods in South Korea, Current Photovoltaic Research, 10(2), 62-71 (2022).  https://doi.org/10.21218/CPR.2022.10.2.062
  4. R. O'hayre, S.-W. Cha, W. Colella, and F. B. Prinz, Fuel cell fundamentals, pp. 9-12, John Wiley & Sons, New York (2016). 
  5. J. C. Yang, Y. S. Park, S. H. Seo, H. J. Lee, and J. S. Noh, Development of a 50 kW PAFC power generation system, J. Power Sources, 106(1-2), 68-75 (2002).  https://doi.org/10.1016/S0378-7753(01)01052-7
  6. K. H. Yoon, J. Y. Choi, J. H. Jang, and C. S. Kim, Effect of preparation methods of a matrix retaining electrolyte on the characteristics of a phosphoric acid fuel cell, J. Korean Ceram. Soc., 34(12), 1205-1212 (1997). 
  7. T. T. Aindow, A. T. Haug, and D. Jayne, Platinum catalyst degradation in phosphoric acid fuel cells for stationary applications, J. Power Sources, 196(10), 4506-4514 (2011).  https://doi.org/10.1016/j.jpowsour.2011.01.027
  8. S. Liu, K. Wippermann, and W. Lehnert, Mechanism of action of polytetrafluoroethylene binder on the performance and durability of high temperature polymer electrolyte fuel cells, Int. J. Hydrogen Energy, 46(27), 14687-14698 (2021).  https://doi.org/10.1016/j.ijhydene.2021.01.192
  9. N. Bevilacqua, M. G. George, S. Galbiati, A. Bazylak, and R. Zeis, Phosphoric acid invasion in high temperature PEM fuel cell gas diffusion layers, Electrochim. Acta, 257, 89-98 (2017).  https://doi.org/10.1016/j.electacta.2017.10.054
  10. F. S. Nanadegani, E. N. Lay, and B. Sunden, Computational analysis of the impact of a micro porous layer (MPL) on the characteristics of a high temperature PEMFC, Electrochim. Acta, 333, 135552 (2020). 
  11. S.-G. Kang, Y.-C. Park, S.-K. Kim, S.-Y. Lim, D.-H. Jung, J.-H. Jang, and D.-H. Peck, Performance of membrane electrode assembly for DMFC prepared by bar-coating method, J. Korean Electrochem. Soc., 11(1), 16-21 (2008).  https://doi.org/10.5229/JKES.2008.11.1.016
  12. K. Traina, R. Cloots, S. Bontempi, G. Lumay, N. Vandewalle, and F. Boschini, Flow abilities of powders and granular materials evidenced from dynamical tap density measurement, Powder Technol., 235, 842-852 (2013).  https://doi.org/10.1016/j.powtec.2012.11.039
  13. D. T. Chin and H. H. Chang, On the conductivity of phosphoric acid electrolyte, J. Appl Electrochem, 19(1), 95-99 (1989).  https://doi.org/10.1007/BF01039396
  14. Y. W. Kim and J. S. Lee., Manufacture of SiC matrix for PAFC, J. Energy Eng., 2(2), 187-193 (1993). 
  15. S.-S. Han, P.-H. Lee, J.-Y. Lee, C.-S. Park, and S.-S. Hwang, Heat transfer by heat generation in electrochemical reaction of PEMFC, J. Korean Electrochem. Soc., 11(4), 273-283 (2008)  https://doi.org/10.5229/JKES.2008.11.4.273
  16. R.-H. Song, C.-S. Kim, and D.-R. Shin, AC impedance study of oxygen electrode in phosphoric acid fuel cell, J. Korean Electrochem. Soc., 3(4), 191-195 (2000).