DOI QR코드

DOI QR Code

Necessity of Quality Control for Aviation Fuel(Jet A-1) to Secure Aviation Safety

항공안전 확보를 위한 항공유(Jet A-1) 품질관리 필요성

  • Junbeom Heo (Korea Coast Guard Research Center) ;
  • Yumi Kang (Korea Coast Guard Research Center) ;
  • Heejin Lee (Chemical Analysis Research Team, Korea Coast Guard Research Center)
  • Received : 2024.01.15
  • Accepted : 2024.04.26
  • Published : 2024.04.30

Abstract

Accidents due to aircraft fuel defects rank in the top 13 of the 34 accident types described by CAST-ICAO Common Taxonomy Team(CICTT). Aircraft accidents occur because of the inflow of moisture or pollutants depending on the distribution process and storage environment. To confirm the change in physical properties of the aircraft oil stored for a long time, we stored JET A-1 aircraft oil in a metal can to observe the change after six months. We confirmed that the aircraft oil stored for a long time satisfied the quality standards, and the stability of the fuel oil was high. However, in scenarios in which aircraft oil is stored separately on ships, onshore storage facilities, oil fields, etc., owing to the nature of missions, such as in marine police aircraft, the inflow of moisture or pollutants may likely occur due to changes in the internal and external environment. In addition, pollutants can be analyzed using existing tests and distillation properties, but for moisture, domestic and international standards and domestic laws determine the moisture separation ability of aircraft oil through the water separation index, but the moisture content is not analyzed. Therefore, aviation safety must be secured by adding quality control standards for moisture content and performing revisions to uniformize domestic and international standards and laws.

항공기 연료 결함으로 인한 사고는 CICTT에서 규정하는 사고유형 34개 중 상위 13번째를 차지할 정도로 중요하다. 유통과정과 보관환경 등에 따라 수분이나 오염물질의 유입되어 항공기 사고가 발생하는 것으로 알려져 있다. 장기간 보관 항공유의 물성변화를 확인하고자 JET A-1 항공유를 금속캔에 보관하여 6개월 이후의 변화를 관찰하였다. 그 결과 장기간 보관된 항공유는 품질기준을 만족하였으며, 연료유의 안정성도 높은 것으로 확인되었다. 하지만 해양경찰 항공기와 같이 임무의 특성상 항공유를 선박과 육상 저장시설, 유조차등에 분리하여 보관하고 있는 상황에서는 내외부 환경 변화로 인해 수분이나 오염물질의 유입 가능성이 높다. 또한, 오염물질에 대한 분석은 현존 검, 증류성상 등으로 분석이 가능하지만 수분의 경우는 국내외 표준과 국내법령에서 물 분리지수를 통한 항공유의 수분 분리능력을 판단할 뿐 수분함량에 대한 분석이 수행되지 않고 있다. 이에 수분함량에 대한 품질관리 기준을 추가하고 국내외 표준과 법령을 획일화하는 개정을 수행하여 항공 안전성을 확보해야 할 것이다.

Keywords

References

  1. ASTM D1655-22a(2022), Standard Specification for Aviation Turbine Fuels.
  2. ATSB Transport Safety Report(2019), Engine power loss involving piper aircraft Inc. PA-36, VH-TVC, near Latrobe Valley Airport, Victoria, on 12 August 2019, AO-2019-043.
  3. ATSB Transport Safety Report(2023), Fuel contamination involvinga cessna aircraft company 172N at Groote Eylandt, Northern Territory, on 28 March 2023, AB-2023-002.
  4. Australian Government Civil Aviation Safety Aurthority(2016), Water Contamination of Aviation fuel(AVGAS/MOGAS) Airworthiness bulletin.
  5. Aviation Investigation Preliminary Report(2023), National Transportation Safety Board, Report number:ERA23FA181.
  6. Aviation Investigation Report(2003), Fuel starvation/Forced landing, ComputaPlane Ltd. Cessna 188B N6606Q, Badger, Newfoundland and Labrador, A03A0013.
  7. Baek, N. G., H. W. Lee, C. R. Lee, J. S. Yoo, and K. S. Park(2018), A Study on a Characterization of Multicomponent Jet Fuel, Aerospace System Engineering, pp. 564-567.
  8. Baena-Zambrana, S., S. L. Repetto, C. P. Lawson, and J. K-W. Lam(2013), Behaviour of water in jet fuel-A literature review, Progress in Aerospace Sciences, Vol. 60, pp. 35-44. https://doi.org/10.1016/j.paerosci.2012.12.001
  9. Behbahani-Pour MJ, and G. Radice(2017), Fuel contamination on the large transport airplanes, aeronautics & aerospace engineering, Vol. 6, No. 4.
  10. Choi, Y. J., J. H. Ahn, K. I. You, and J. G. Park(2013), A case study on the Occurrence Category of aircraft accidents and serious incidents in Korea in the 2000's, Korean Society for Aviation and Aeronautics, Vol. 21, No. 4, pp. 119-125. https://doi.org/10.12985/ksaa.2013.21.4.119
  11. Defence Standard 91-091(2019), Turbine Fuel, Kerosene Type, Jet A-1; NATO Code: F-35; Joint service Designation: AVTUR.
  12. Dickerson, T., J. Buffin, R. Kamin, and D. Mearns(2014), Navy Field Evaluation of Particle Counter Technology for Aviation Fuel Contamination Detection, NF&LCFT REPORT 441/14.
  13. Doe, J. W., J. M. Youn, H. Y. Jeon, E. S. Yim, J. M. Lee, and H. K. Kang(2018), Study on Characteristics of Change of Physical/Chemical Property in Domestic Aviation Fuel by the Quality Monitoring Analysis, Oil & Applied Science, Vol. 35, No. 4, pp. 1327-1337.
  14. Edwards, J. T.(2017), Reference jet fuels for combustion testing, 55th A/AA aerospace sciences meeting, p. 146.
  15. Gozdem, K., B. Shailendra, W. Denver Lopp, L. Stanley, and Bernard Y. Tao(2014), Investigation of fatty acid methyl esters in jet fuel, Sustainable Aviation, pp. 103-118.
  16. International Civil Aviation Organization(2012), Manual on civil aviation jet fuel supply, fitst edition.
  17. Jeon, H. Y., M. E. Lee, C. H. Jeon, and J. K. Kim(2021), A Comparative Study on the Quality Change by Long-Term Storage of Aviation Oil, The Korean Society of Industrial and Engineering Chemistry Research Paper Abstract, 2021, pp. 243.
  18. Kim, S. L., J. M. Youn, I. H. Hwang, and T. M. Han(2016), An Comparison of physical and chemical characteristics of Aviation and Rocket Fuels using their specifications, The Korea Society of Propulsion Engineers, pp. 1250-1255.
  19. Kim, Y. S.(1997), Production process and characteristics of petroleum products, Korea Petroleum Association, Vol. 6, No. 196, pp. 84-88.
  20. Maloney, T. C., F. J. Diez, and T. Rossmann(2019), Ice accretion measurement of JET A-1 in aircraft fuel lines, fuel, Vol. 254, 115616.
  21. Shin, D. W.(2016), Analysis of Aircraft Accidents and Quasi-accident Occurrence Types, The korean Society of Hazard Mitigation, Vol. 68, pp. 118-130.
  22. United states department of the interior(1849), Aviation fuel handling handbook.