• Title/Summary/Keyword: chemical restoration

Search Result 289, Processing Time 0.03 seconds

Predicting the Effects of Agriculture Non-point Sources Best Management Practices (BMPs) on the Stream Water Quality using HSPF (HSPF를 이용한 농업비점오염원 최적관리방안에 따른 수질개선효과 예측)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • Non-point source (NP) pollutants in an agricultural landuse are discharged from a large area compared to those in other land uses, and thus effective source control measures are needed. To develop appropriate control measures, it is necessary to quantify discharge load of each source and evaluate the degree of water quality improvement by implementing different options of the control measures. This study used Hydrological Simulation Program-FORTRAN (HSPF) to quantify pollutant discharge loads from different sources and effects of different control measures on water quality improvements, thereby supporting decision making in developing appropirate pollutant control strategies. The study area is the Gyeseong river watershed in Changnyeong county, Gyeongsangnam-do, with agricultural areas occupying the largest proportion (26.13%) of the total area except for the forest area. The main pollutant sources include chemical and liquid fertilizers for agricultural activities, and manure produced from small scale livestock facilities and applied to agriculture lands or stacked near the facilities. Source loads of chemical fertilizers, liquid fertilizers and livestock manure of small scale livestock facilities, and point sources such as municipal wastewater treatment plants (WWTPs), community WWTPs, private sewage treament plants were considered in the HSPF model setup. Especially, NITR and PHOS modules were used to simulate detailed fate and transport processes including vegitation uptake, nutrient deposition, adsorption/desorption, and loss by deep percolation. The HSPF model was calibrated and validated based on the observed data from 2015 to 2020 at the outlet of the watershed. The calibrated model showed reasonably good performance in simulating the flow and water quality. Five Pollutants control scenarios were established from three sectors: agriculture pollution management (drainge outlet control, and replacement of controlled release fertilizers), livestock pollution management (liquid fertilizer reduction, and 'manure management of small scale livestock facilities) and private STP management. Each pollutant control measure was further divided into short-term, mid-term, and long-term scenarios based on the potential achievement period. The simulation results showed that the most effective control measure is the replacement of controlled release fertilizers followed by the drainge outlet control and the manure management of small scale livestock facilities. Furthermore, the simulation showed that application of all the control measures in the entire watershed can decrease the annual TN and TP loads at the outlet by 40.6% and 41.1%, respectively, and the annual average concentrations of TN and TP at the outlet by 35.1% and 29.2%, respectively. This study supports decision makers in priotizing different pollutant control measures based on their predicted performance on the water quality improvements in an agriculturally dominated watershed.

Jangdo(Small Ornamental Knives) manufacturing process and restoration research using Odong Inlay application (오동상감(烏銅象嵌)기법을 활용한 장도(粧刀)의 제작기술 및 복원연구)

  • Yun, Yong Hyun;Cho, Nam Chul;Jeong, Yeong Sang;Jang, Chu Nam
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.2
    • /
    • pp.172-189
    • /
    • 2016
  • In this research, literature research on the Odong material, mixture ratio, casting method and casting facility was conducted on contemporary documents, such as Cheongong Geamul. Also, a long sword was produced using the Odong inlay technique. The sword reproduction steps were as follows; Odong alloying, silver soldering alloying, Odong plate and Silver plate production, hilt and sheath production, metal frame and decorative elements, such as a Dugup (metal frame), production, Odong inlay assembly and final assembly. For the Odong alloy production, the mixture ratio of the true Odong, which has copper and gold ratio of 20:1, was used. This is traditional ratio for high quality product according to $17^{th}$ century metallurgy instruction manual. The silver soldering alloy was produced with silver and brass(Cu 7 : Zn 3) ratio of 5:1 for inlay purpose and 5:2 ratio for simple welding purpose. The true Odong alloy laminated with silver plate was used to produce hilt and sheath. The alloy went through annealing and forging steps to make it into 0.6 mm thick plate and its backing layer, which is a silver plate, had the matching thickness. After the two plates were adhered, the laminated plate went through annealing, forging, engraving, silver inlaying, shaping, silver welding, finishing and polishing steps. During the Odong colouring process, its red surface turns black by induced corrosion and different hues can be achieved depending on its quality. To accomplish the silver inlay Odong techniques, a Hanji saturated with thirty day old urine is wrapped around a hilt and sheath material, then it is left at warm room temperature for two to three hours. The Odong's surface will turn black when silver inlay remains unchanged. Various scientific analysis were conducted to study composition of recreated Odong panel, silver soldering, silver plate and the colouring agent on Odong's surface. The recreated Odong had average out at Cu 95.57 wt% Au 4.16wt% and Cu 98.04 wt% Au 1.95wt%, when documented ratio in the old record is Cu 95wt% and Au 5wt%. The recreated Odong was prone to surface breakage during manufacturing process unlike material made with composition ratio written in the old record. On the silver plate of the silver and Odong laminate, 100wt% Ag was detected and between the two layers Cu, Ag and Au were detected. This proves that the adhesion between the two layers was successfully achieved. The silver soldering had varied composition of Ag depending on the location. This shows uneven composition of the silver welding. A large quantities of S, that was not initially present, was detected on the surface of the black Odong. This indicates that presence of S has influence on Odong colour. Additional study on the chromaticity, additional chemical compounds and its restoration are needed for the further understanding of the origin of Odong colour. The result of Odong alloy testing and recreation, Odong silver inlay long sword production, scientific analysis of the Odong black colouring agent will form an important foundation of knowledge for conservation of Odong artifact.

Management Plan and Analysis of the Characteristics of Naturalized Plants by Ecological Restoration of Gaeumjeong Stream, Changwon-si (창원시 가음정천의 생태복원에 따른 귀화식물 특성 분석과 관리방안)

  • You, Ju-Han;Park, Kyung-Hun;Choi, Jin-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.4
    • /
    • pp.48-59
    • /
    • 2014
  • This study was carried out to present raw data on managing the restored urban stream by studying the naturalized plants distributed in Gaeumjeong Stream, Changwon-si, Gyeongsangnam-do, Korea. The results were as follows. The numbers of naturalized plants were summarized as 45 taxa including 17 families, 36 genera, 43 species and 2 varieties. The invasive alien plants were 2 taxa including Ambrosia artemisiifolia and Lactuca sativa. The following summarizes the attributes of the naturalized plants. Most of the plants commonly originated from Europe and North America. The 5 naturalized degree that was widely distributed and had many individual was the most common. Until 1921, after the opening of 1 period was the most common in the introduced period. Section 12 had the highest NI at 41.9%, and the lowest, at 20.5%, in sections 9 and 19 were analyzed. Section 1 had the highest UI at 6.2%, whereas, the lowest, at 2.5%, was calculated in sections 19 and 20. Section 2 showed the highest DI at 16.7%. The first results of the analysis of the causes for the invasion of naturalized plants on the riverside and waterways, and physical factors and maintenance are directly affected. Second, sewage, muddy water and sediment deposits this naturalized plant caused by a chemical factor. Third, it is thought that invasive alien plants are irregular as it happens in biological factor. The proposed management plan naturalized plants, the first, disturbance caused by species management is a young object is removed immediately before flowering scape to eliminate or suppress the propagation of physical methods will be needed. Second, the fact that the national spread of native plant species and planting management does not provide space for the growth is very important. Third, agricultural land is disturbed by agricultural practices by interfering with the action of naturalized plants because the source of the river should be prohibited in agriculture. In the future, if we studied the naturalized plants distributed in restored streams located in Changwon-si, the characteristics of change in the ecosystem impact is expected to be beneficial.

Deterioration Assessment for Conservation Sciences of the Five Storied Stone Pagoda in the Jeongrimsaji Temple Site, Buyeo, Korea (부여 정림사지 오층석탑의 보존과학적 풍화훼손도 평가)

  • Kim, Yeong-Taek;Lee, Chan-Hee;Lee, Myeong-Seong
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.675-687
    • /
    • 2005
  • The rocks of the five storied stone pagoda in the Jeongrimsaji temple site are 149 materials in total with porphyritic biotite granodiorite. They include pegmatite veinlet, basic xenolith and evenly developed plagioclase porphyry. This stone pagoda has comparably small fracture and cracks which are farmed in the times of rock properties, but surface exfoliation and granular decomposition are in process actively since the rocks are generally weakened from the influence of air contaminants and acid rain. Structural instability of constituting rocks in the 4th roof materials are observed to occur from distortion and tilt. Such instability is judged to threat stability of the upper part of the stone pagoda. Also, chemical weathering is operating even more as the contaminants, ferro-manganese hydroxides eluted from water-rock interaction on the rock surface. Most of the rock surface is covered with yellowish brown, dark black and light gray contaminants, and especially occur in the lower part of the roof rocks on each floor. The roof underpinning rocks are severe in surface pigmentation from manganese hydroxides and light gray contaminants. The surface of rocks lives bacteria. algae, lichen, or moss and diverse productions in colors of light gray, dark Bray and dark green. Grayish white crustose lichen grows thick on the surface with darkly discolored by fungi and algae in the first stage on basement rocks, and weeds grows wild on the upper part of each roof rocks. This stone pagoda must closely observe the movements of the upper part rock materials through minute safety diagnosis and long term monitoring for structural stability. Especially since the surface discoloration of rocks and pigmentation of secondary contaminants are severe, establishment of general restoration and scientific conservation treatment are necessary through more detailed study for this stone pagoda.

Vertical Distribution of the Heavy Metal in Paddy Soils of Below Part at Guundong Mine in Milyang, Korea (구운동 폐광산 하류 논토양의 토심별 중금속함량)

  • Yun, Eul-Soo;Park, Sung-Hak;Ko, Jee-Yeon;Jung, Ki-Yeol;Park, Ki-Do;Hwang, Jae-Bok;Park, Chang-Yeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.590-595
    • /
    • 2010
  • This study was conducted to investigate form of pollution brought by residual of mine tailing in agricultural land, and get basic information need for environment restoration. Guundong mine was completely restored region by implementation the soil pollution prevention plan. The districts is soils in Guundong mine vicinity the Mahul-ri, Muan-myeon, Miryang city, Gyeongsangnam-do. The nature of soil studied is the Shinra series andesite and mineral deposits which contain brimstone and heavy metals such as gold, silver, copper, lead, and zinc. The residual mine tailing and around agricultural land of heavy metals analyzed with 0.1N HCI solubility. The chemical properties of surface soil in upper part around mining area were pH 4.3-4.4, organic matter 19-21 g $kg^{-1}$, available $P_2O_5$ 85 mg $kg^{-1}$, exchangeable Ca 0.21-0.25 $cmol_c\;kg^{-1}$, exchangeable Mg 0.04 $cmol_c\;kg^{-1}$. The pH, exchangeable Ca, and Mg were increased with soil depth. The contents of 0.1N HCl extractable Cu, Cd, Pb, Cr, and Ni in soil (siteI) which influenced by outflow water from mine tailing were 97, 0.6, 197, 0.28 및 0.12 mg $kg^{-1}$, respectively. The vertical distribution of heavy metals in soil varied considerably among the metals kind. In case of siteI, The content of Cu, Pb, and Cr in soil was highest at surface soil. However, the content of Cd, Zn, Ni, and Mn was high at middle part of soil profile.

Stream Ecosystem Assessments, based on a Biological Multimetric Parameter Model and Water Chemistry Analysis (생물학적 다변수 모델 적용 및 수화학 분석에 의거한 갑천생태계 평가)

  • Bae, Dae-Yeul;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.198-208
    • /
    • 2006
  • This research was to apply a multi-metric approach, so called the Index of Biological Integrity (IBI) as a tool for biological evaluations of water environments, to a wadable stream. For the study, we surveyed 5 sampling locations in Kap Stream during August 2004 ${\sim}$ September 2005. We also compared the biological data with long-term water quality data, obtained from the Ministry of Environment, Korea and physical habitat conditions based on the Quantitative Habitat Evaluation Index (QHEI). We used ten metric systems for the IBI model to evaluate biological stream health. Overall IBI values in Kap Stream averaged 24 (range: 20${\sim}$30, n=5), indicating a "fair ${\sim}$ poor" conditions according to the modified criteria of Karr (1981) and US EPA(1993). Exclusive of 4th survey, average IBI values at the upstream reach (S1 ${\sim}$ S3)and downstream reach (S4 ${\sim}$ S5) were 20 and 24, respectively. However, in 4th survey the averages were 21 and 20 in the upstream and downstream reaches, respectively. This difference was larger in the upstream than in the downstream because of physical condition disturbed during summer monsoon. Values of the QHEI varied from 75(fair condition) to 148 (good condition) and values of QHEI in the S3 were significantly (P=0.001, n=5) lower than other sites. Biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were greater by 3 ${\sim}$ 8 fold in the downstream than in the upstream reach. We believe that present IBI approach applied in this study may be used as a key tool to set up specific goals for restoration of Kap Stream.

A case study on monitoring the ambient ammonia concentration in paddy soil using a passive ammonia diffusive sampler (논 토양에서 암모니아 배출 특성 모니터링을 위한 수동식 암모니아 확산형 포집기 이용 사례 연구)

  • Kim, Min-Suk;Park, Minseok;Min, Hyun-Gi;Chae, Eunji;Hyun, Seunghun;Kim, Jeong-Gyu;Koo, Namin
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.100-107
    • /
    • 2021
  • Along with an increase in the frequency of high-concentration fine particulate matter in Korea, interest and research on ammonia (NH3) are actively increasing. It is obvious that agriculture has contributed significantly to NH3 emissions. However, studies on the long-term effect of fertilizer use on the ambient NH3 concentration of agricultural land are insufficient. Therefore, in this study, NH3 concentration in the atmosphere of agricultural land was monitored for 11 months using a passive sampler. The average ambient NH3 concentration during the total study period was 2.02 ㎍ m-3 and it was found that the effect of fertilizer application on the ambient NH3 concentration was greatest in the month immediately following fertilizer application (highest ambient NH3 concentration as 11.36㎍ m-3). After that, it was expected that the NH3 volatilization was promoted by increases in summer temperature and the concentration in the atmosphere was expected to increase. However, high NH3 concentrations in the atmosphere were not observed due to strong rainfall that lasted for a long period. After that, the ambient NH3 concentration gradually decreased through autumn and winter. In summary, when studying the contribution of fertilizer to the rate of domestic NH3 emissions, it is necessary to look intensively for at least one month immediately after fertilizer application, and weather information such as precipitation and no-rain days should be considered in the field study.

Ecological Network on Benthic Diatom in Estuary Environment by Bayesian Belief Network Modelling (베이지안 모델을 이용한 하구수생태계 부착돌말류의 생태 네트워크)

  • Kim, Keonhee;Park, Chaehong;Kim, Seung-hee;Won, Doo-Hee;Lee, Kyung-Lak;Jeon, Jiyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.60-75
    • /
    • 2022
  • The Bayesian algorithm model is a model algorithm that calculates probabilities based on input data and is mainly used for complex disasters, water quality management, the ecological structure between living things or living-non-living factors. In this study, we analyzed the main factors affected Korean Estuary Trophic Diatom Index (KETDI) change based on the Bayesian network analysis using the diatom community and physicochemical factors in the domestic estuarine aquatic ecosystem. For Bayesian analysis, estuarine diatom habitat data and estuarine aquatic diatom health (2008~2019) data were used. Data were classified into habitat, physical, chemical, and biological factors. Each data was input to the Bayesian network model (GeNIE model) and performed estuary aquatic network analysis along with the nationwide and each coast. From 2008 to 2019, a total of 625 taxa of diatoms were identified, consisting of 2 orders, 5 suborders, 18 families, 141 genera, 595 species, 29 varieties, and 1 species. Nitzschia inconspicua had the highest cumulative cell density, followed by Nitzschia palea, Pseudostaurosira elliptica and Achnanthidium minutissimum. As a result of analyzing the ecological network of diatom health assessment in the estuary ecosystem using the Bayesian network model, the biological factor was the most sensitive factor influencing the health assessment score was. In contrast, the habitat and physicochemical factors had relatively low sensitivity. The most sensitive taxa of diatoms to the assessment of estuarine aquatic health were Nitzschia inconspicua, N. fonticola, Achnanthes convergens, and Pseudostaurosira elliptica. In addition, the ratio of industrial area and cattle shed near the habitat was sensitively linked to the health assessment. The major taxa sensitive to diatom health evaluation differed according to coast. Bayesian network analysis was useful to identify major variables including diatom taxa affecting aquatic health even in complex ecological structures such as estuary ecosystems. In addition, it is possible to identify the restoration target accurately when restoring the consequently damaged estuary aquatic ecosystem.

A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea (운주사 석조문화재의 보존상태와 보존방안에 대한 연구)

  • Sa-Duk, Kim;Chan-Hee, Lee;Seok-Won, Choi;Eun-Jeong, Shin
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.285-307
    • /
    • 2004
  • Synthesize and examine petrological characteristic and geochemical characteristic by weathering formation of rock and progress of weathering laying stress on stone cultural properties of Unjusa temple of Chonnam Hwasun county site in this research. Examine closely weathering element that influence mechanical, chemical, mineralogical and physical weathering of rocks that accomplish stone cultural properties and these do quantification, wish to utilize by a basic knowledge for conservation scientific research of stone cultural properties by these result. Enforced component analysis of rock and mineralogical survey about 18 samples (pyroclastic tuff; 7, ash tuff; 4, granite ; 4, granitic gneiss; 3) all to search petrological characteristic and geochemical characteristic by weathering of Unjusa temple precinct stone cultural properties and recorded deterioration degree about each stone cultural properties observing naked eye. Major rock that constitution Unjusa temple one great geological features has strike of N30-40W and dip of 10-20NE being pyroclastic tuff. This pyroclastic tuff is ranging very extensively laying center on Unjusa temple and stone cultural properties of precinct is modeled by this pyroclastic tuff. Stone cultural propertieses of present Unjusa temple precinct are accomplishing structural imbalance with serious crack, and because weathering of rock with serious biological pollution is gone fairly, rubble break away and weathering and deterioration phenomenon such as fall off of a particle of mineral are appearing extremely. Also, a piece of iron and cement mortar of stone cultural properties everywhere are forming precipitate of reddish brown and light gray being oxidized. About these stone cultural properties, most stone cultural propertieses show SD(severe damage) to MD(moderate damage) as result that record Deterioration degree. X-ray diffraction analysis result samples of each rock are consisted of mineral of quartz, orthoclase,plagioclase, calcite, magnetite etc. Quartz and feldspar alterated extremely in a microscopic analysis, and biotite that show crystalline form of anhedral shows state that become chloritization that is secondary weathering mineral being weathered. Also, see that show iron precipitate of reddish brown to crack zone of tuff everywhere preview rock that weathering is gone deep. Tuffs that accomplish stone cultural properties of study area is illustrated to field of Subalkaline and Peraluminous, $SiO_2$(wt.%) extent of samples pyroclastic tuff 70.08-73.69, ash tuff extent of 70.26-78.42 show. In calculate Chemical Index of Alteration(CIA) and Weathering Potential Index(WPI) about major elements extent of CIA pyroclastic tuff 55.05-60.75, ash tuff 52.10-58.70, granite 49.49-51.06 granitic gneiss shows value of 53.25-67.14 and these have high value gneiss and tuffs. WPI previews that is see as thing which is illustrated being approximated in 0 lines and 0 lines low samples of tuffs and gneiss is receiving esaily weathering process as appear in CIA. As clay mineral of smectite, zeolite that is secondary weathering produce of rock as result that pick powdering of rock and clothing material of stone cultural properties observed by scanning electron micrographs (SEM). And roots of lichen and spore of hyphae that is weathering element are observed together. This rock deep organism being coating to add mechanical weathering process of stone cultural properties do, and is assumed that change the clay mineral is gone fairly in stone cultural properties with these. As the weathering of rocks is under a serious condition, the damage by the natural environment such as rain, wind, trees and the ground is accelerated. As a counter-measure, the first necessary thing is to build the ground environment about protecting water invasion by making the drainage and checking the surrounding environment. The second thing are building hardening and extirpation process that strengthens the rock, dealing biologically by reducing lichens, and sticking crevice part restoration using synthetic resin. Moreover, it is assumed to be desirable to build the protection facility that can block wind, sunlight, and rain which are the cause of the weathering, and that goes well with the surrounding environment.