• Title/Summary/Keyword: chattering

Search Result 388, Processing Time 0.031 seconds

A Study on the Chattering Phenomena of a Check Valve (역지밸브 채터링 현상 해소방안 연구)

  • 유기완;이준신;김태룡
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.36-41
    • /
    • 2002
  • The cause and the elimination method for the chattering phenomena were investigated in a check valve attached to the exit of an auxiliary cooling water pump in a Korean nuclear powerplant. From the site experiment and the numerical calculation, the incident angle of the disk was so small that it was not able to produce the sufficient lifting force to overcome the gravitational component of the disk weight. Moreover, it turned out that the installation position was not symmetric for the secondary vortical flow generated inside the elbow so that the flow structure had strongly unstable flow characteristics. From this study, the tapping noise and the chattering phenomena were eliminated exactly by changing the incidence angle of the valve disk and the installation position of the calve body.

A Study of Method for Removing Reaching Phase and Chattering Phenomenon in Variable Structure Control Systems (가변정도제어계의 Reaching Phase 및 chattering 현상의 제거에 관한 연구)

  • 주기호;송명현;박귀태;천희영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.1
    • /
    • pp.52-57
    • /
    • 1987
  • In this paper, a methodology is developed to remove the reaching phase and the high frequency chattering phenomenon which are the common drawbacks of variable structrue control (VSC) system. A time varying switching surface is proposed to achieve sliding motion during the entire control process and a continuous control law whose terms are continuous functions inside a boundary layer neighbouring the time varying switching surface is developed to remove the high frequency chattering phenomenon of VSC. The methodology developed in this paper is applied to the 2'nd order time varying system and the simulated results are compared with those of typical VSC methodology.

  • PDF

A Fuzzy Sliding Mode Controller for Nonlinear Robot System

  • Yun, Jeong-Joo;Kim, Jang-Ku;Ahn, Cheol-Ki;Lee, Min-Cheul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.66.5-66
    • /
    • 2001
  • A proposed fuzzy-sliding mode controller in this paper shows that it can reduce amount of chattering inherent to sliding mode control and it is robust against parameter uncertainties. Sliding mode control is one of the control method for nonlinear systems. It can provide good transient performance and system robustness for nonlinear system. But chattering is a serious problem of the sliding mode control. The chattering is caused by steady/state error or uncertainties of the system. There are three kinds of method that can remove chattering. First, steady-state error can be removed by adding PI controller to the system. Second, putting dead-zone in sliding surface can be insensitive uncertainties ...

  • PDF

Performance Investigation of Semi-Active Control Logic to Minimize a Pointing Performance Degradation of On-Board Payload by Chattering Effects (Chattering에 의한 위성 탑재체 지향성능저하 최소화를 위한 반능동제어기법 성능분석)

  • Oh, Hyun-Ung;Choi, Young-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.882-889
    • /
    • 2010
  • Semi-active vibration control is one of the attractive control methods for space application due to its robustness as passive damping system and much higher damping performance than passive system. However, a chattering induced by the sudden variation of damping force at the time of On-Off switching of semi-active control device degrades pointing performance of the on-board payload. In this paper, to enhance the pointing performance of the on-board payload, we proposed a semi-active vibration isolation with a strategy for attenuating chattering effect. Numerical simulation results using simplified analysis model indicated that the proposed semi-active control strategy produced much better isolation performance than the conventional Bang-Bang control semi-active control laws derived from skyhook and LQ theories.

Reduction of Chattering Error of Reed Switch Sensor for Remote Measurement of Water Flow Meter (리드 스위치 센서를 이용한 원격 검침용 상수도 계량기에서 채터링 오차 감소 방안 연구)

  • Ayurzana, Odgerel;Kim, Hie-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.42-47
    • /
    • 2007
  • To reduce the chattering errors of reed switch sensors in the automatic remote measurement of water meter a reed switch sensor was analyzed and improved. The operation of reed switch sensors can be described as a mechanical contact switch by approximation of permanent magnet piece to generate an electrical pulse. The reed switch sensors are used mostly in measurement application to detect the rotational or translational displacement. To apply for water flow measurement devices, the reed switch sensors should keep high reliability. They are applied for the electronic digital type of water flow meters. The reed switch sensor is just mounted simply on the conventional mechanical type flow meter. A small magnet is attached on a pointer of the water meter counter rotor. Inside the reed sensor two steel leaf springs make mechanical contact and apart repeatedly as rotation of flow meter counter. The counting electrical contact pulses can be converted as the water flow amount. The MCU sends the digital flow rate data to the server using the wireless communication network. But the digital data is occurred difference or won by chattering noise. The reed switch sensor contains chattering error by it self at the force equivalent position. The vibrations such as passing vehicle near to the switch sensor installed location causes chattering. In order to reduce chattering error, most system uses just software methods, for example using filter algorithm and also statistical calibration methods. The chattering errors were reduced by changing leaf spring structure using mechanical characteristics.

A study on new variable structure system controller design (새로운 가변 구조 제어기의 설계에 관한 연구)

  • 이정훈;김종준;이대식;이주장;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.550-555
    • /
    • 1990
  • In the VSS control, reaching phase and chattering problem are the main disadvantages. A simple nonlinear sliding surface is proposed to cope with the reaching phase. The chattering problem is alleviated by almost continuous control with the compensation using the infinite closed loop.

  • PDF

Design of a Variable Structure Speed Controller having a Dead Zone Switching layer for the Sinusoidal type Brushless DC Motor (데드 존 스위칭 영역을 갖는 정현파형 브러시리스 직류전동기의 가변구조 속도제어기 설계)

  • 김세일;최중경;박승엽
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.639-650
    • /
    • 1999
  • In this paper, a chattering alleviation VSS controller for the sinusoidal type BLDC motor is designed. Dead Zone function is proposed to change the chattering occurring in the transient state from high frequency to low frequency and time-varying gains are applied for the control input to eliminate the steady state excessive chattering in the conventional ISM. The proposed Dead Zone function represents the sliding layer composed of two switching surfaces and if a state vector exists in this layer, the chattering don't occur. Simulation and experimental results confirm the useful effects of the above algorithm.

  • PDF

퍼지 논리를 이용한 슬라이딩 모드 제어기의 인자 자동 튜닝

  • Ryu, Se-Hee;Park, Jahng-Hyon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.973-979
    • /
    • 2001
  • Sliding mode control guarantees robustness in the presence of modeling uncertainties and external disturbances. However, this can be obtained at the cost of high control activity that may lead to chattering As one way to alleviate this problem a boundary layer around sliding surface is typically used. In this case the selection of controller gain, control ban width and boundary layer thickness is a crucial problem for the trade-off between tracking error and chattering. The parameter tuning is usually done by trail-and-error in practice causing significant effort and time. An auto tuning method based on fuzzy rules is proposed in the paper in this method tracking error and chattering are monitored by performance indices and the controller tunes the design parameters intelligently in order to compromise both indices. To demonstrate the efficiency of the propose method a mass-spring translation system and a roboic control system are simulated and tested It is shown that the proposed algorithm is effective to facilitae the parameter tuning for sliding mode controllers.

  • PDF

Design and Implementation of an Adaptive Sliding-Mode Observer for Sensorless Vector Controlled Induction Machine Drives

  • Zhang, Yanqing;Yin, Zhonggang;Liu, Jing;Tong, Xiangqian
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1304-1316
    • /
    • 2018
  • An adaptive sliding-mode observer for speed estimation in sensorless vector controlled induction machine drives is proposed in this paper to balance the dilemma between the requirement of fast reaching transient and the chattering phenomenon reduction on the sliding-mode surface. It is well known that the sliding-mode observer (SMO) suffers from the chattering phenomenon. However, the reduction of the chattering phenomenon will lead to a slow transient process. In order to balance this dilemma, an adaptive exponential reaching law is introduced into SMO by optimizing the reaching way to the sliding-mode surface. The adaptive exponential reaching law is based on the options of an exponential term that adapts to the variations of the sliding-mode surface and system states. Moreover, the proposed sliding-mode observer considering adaptive exponential reaching law, which is called adaptive sliding-mode observer (ASMO), is capable for reducing the chattering phenomenon and decreasing the reaching time simultaneously. The stability analysis for ASMO is achieved based on Lyapunov stability theory. Simulation and experimental results both demonstrate the correctness and the effectiveness of the proposed method.