• Title/Summary/Keyword: charging effect

Search Result 331, Processing Time 0.026 seconds

Economic Integration and the Changes in Logistics Circumstances in Northeast Asia -Emphasizing the Strengthening of Competitive Power of Hub Ports-

  • Park, Byung-Hong
    • Journal of Korea Port Economic Association
    • /
    • v.20 no.1
    • /
    • pp.95-122
    • /
    • 2004
  • This study focuses on analyzing the potentiality of economic integration and the changes in logistics circumstances in Northeast Asia. So far as the changes in logistics circumstances in it, it is emphasized a complex transport system by sea and by land, according to the connection with the Railroad of South-North in Korean Peninsula and the Railroad of the Continent of Siberia. It first considers the propriety of economic integration among Korea, China and Japan in Northeast Asia. The first stage of the economic integration in Northeast Asia means it is started from contracting of FTA(Free Trade Agreement) which just agreed at the Summit Conference among Korea, China and Japan in ASEAN+3(Korea China. Japan). At that time, the Summit Conference between the three countries have agreed to study on the propriety of FTA charging by own country's research organization. At first China has been hesitated to join with FTA in spite of high growth in his economy, because the time is not yet for it. After all, China also decided himself to participate to FTA together with Korea and Japan by reacted to the stimulus at the conference atmosphere between every country of ASEAN. The discussion on the changes in logistics circumstances also is needed to deal simultaneously with a situation in the economic integration in Northeast Asia. It is worthy to be paid our attention to the restoration of the Railroad of South-North in Korean Peninsula, which was disconnected for a long time from the dispute between South Korea and North Korea. Therefore, it needs to be investigated together with the movement of economic integration in Northeast Asia. The reaction on the restoration of the Railroad of South-North in Korean Peninsula is not only limited to the transport of trade cargo between South Korea and North Korea, but also it is reached to all of Northeast Asia, so far as to all of the area of Russia, Europe, and the other neighbor countries. Because this railroad is connected with the Railroad of the Continent of Siberia. The transport of trade cargo in Northeast Asia have been mostly depended upon the transport by sea until now. However, it would be divided into the transport by sea as well as by land from now. As its economic effect, the restoration of the Railroad of South-North in Korean Peninsula could be not only contributed to reduce the cost of logistics within South Korea and North Korea, but also within or without in Northeast Asia, Russia, and Europe. Consequently, it could be improved the power of international competitiveness of goods in Northeast Asia, according to the formation of a complex transport system together with the transport by sea and by land.

  • PDF

Dependence of Thermal and Electrochemical Properties of ceramic Coated Separators on the Ceramic Particle Size (알루미나 크기에 따른 세라믹 코팅 분리막의 열적 특성 및 전기화학적 특성)

  • Park, Sun Min;Yu, Ho Jun;Kim, Kwang Hyun;Kang, Yun Chan;Cho, Won Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.27-33
    • /
    • 2017
  • Conventional lithium ion batteries suffer from notorious safety issues caused by inevitable lithium dendrite formation and proliferation during over/fast charging processes. The lithium dendrites or mechanical damage on the separator induce internal short circuit in LiB that generates extensive amount of heat within contacted electrode surfaces through the separator. During this heat generation, conventional polyolefin separators shrinks dramatically, and increasing short circuit pathway, that causes the battery to explode. To overcome this serious issue, ceramic coated separators are developed in commercial LiB to enhance thermal and mechanical stability. In this paper, various size(IL = 488.5 nm, I = 538.7 nm, S = 810.3 nm, D = 1533.3 nm) of $Al_2O_3$ particles are coated using styrene-butadiene rubber(SBR) / carboxymethyl cellulose(CMC) binder on PE separator to investigate its thermal stability and electrochemical effect on LiB coin cell with NCM cathode and Li metal anode.

Dust Collection Characteristics of Multi-layer Multi-stage Porous Plate System with Polarization Charge to Impaction Effect (임팩션 효과에 편극전하 방식을 부가한 다층 다단 다공성 플레이트 시스템의 집진특성)

  • Kim, Bo-Bae;Kim, Il-Kyu;Yoa, Seok-Jun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.598-605
    • /
    • 2011
  • The main object of this study is to investigate the Dust Collection Characteristics of multi-layer multi-stage porous plate system with polarization charging mechanism, experimentally. The experiment is carried to analyze the characteristics of pressure drop and collection efficiency for the present system with the experimental parameters such as applied voltage, inlet velocity, inlet concentration and stage number, etc. In results, the pressure drop becomes 18 to $134mmH_2O$, with increment of stage number (1 to 5) at inlet velocity $v_{in}$ = 3.11 m/s ($v_t$ = 18 m/s) and inlet concentration 3 g/m3 for inflow current. In case of both applied voltage 0 kV and non-inflow current, the collection efficiency of 5 stage is 92.5% at $v_{in}$ = 2.58 m/s ($v_t$ = 15 m/s), while it is estimated that the collection efficiency becomes about 6% higher than that of 0 kV and non-inflow as 98.5% at $v_{in}$ = 2.58 m/s for both alternating polarization charge (applied voltage 2.5 kV) and inflow current system.

Study on the Optical Characteristics of the Green Phosphor for PDP Application (PDP용 녹색 형광체의 광 특성 개선에 관한 연구)

  • Han, Bo Yong;Yoo, Jae Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.150-156
    • /
    • 2009
  • Plasma Display Panels(PDPs) require to have improved luminous efficiency, low manufacturing cost, and high image quality to compete with other flat display devices such as Liquid Crystal Displays(LCDs) and organic light-emitting diodes(OLEDs). In addition, the diversity of product line-up may be needed for high market share. In this paper, the optical characteristics of typical green phosphor for PDP application are reviewed and the problem-based solution will be proposed. We also shortly describe the principle of 3D-PDPs which are promising. Then, the requirement of green phosphor for 3D-PDP application is summarized and research achievement, as of now, is described. The typical problems of $Zn_2SiO_4:Mn$ phosphor, which is the most well-known, are the negatively charged surface property and the long decay time, which leads to unstable discharge in green cell and afterimage. These problems were solved by coating the phosphor surface with metallic oxide. It was found that $Al_2O_3$ would be the best material for $Zn_2SiO_4:Mn$ phosphor. It gives longevity as well as low operating voltage due to the charging effect in green cells. Also, new phosphors, $(Y,\;Gd)Al_3(BO_3)_4:Tb$ and $(Mg,\;Zn)Al_2O_4:Mn$ phosphor are proposed for increasing the luminance and reducing the decay time, which are capable to apply for 3D-PDP application.

A Comparative Study on Heat Loss in Rock Cavern Type and Above-Ground Type Thermal Energy Storages (암반공동 열에너지저장과 지상식 열에너지저장의 열손실 비교 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.442-453
    • /
    • 2013
  • A large-scale high-temperature thermal energy storage(TES) was numerically modeled and the heat loss through storage tank walls was analyzed using a commercial code, FLAC3D. The operations of rock cavern type and above-ground type thermal energy storages with identical operating condition were simulated for a period of five consecutive years, in which it was assumed that the dominant heat transfer mechanism would be conduction in massive rock for the former and convection in the atmosphere for the latter. The variation of storage temperature resulting from periodic charging and discharging of thermal energy was considered in each simulation, and the effect of insulation thickness on the characteristics of heat loss was also examined. A comparison of the simulation results of different storage models presented that the heat loss rate of above-ground type TES was maintained constant over the operation period, while that of rock cavern type TES decreased rapidly in the early operation stage and tended to converge towards a certain value. The decrease in heat loss rate of rock cavern type TES can be attributed to the reduction in heat flux through storage tank walls followed by increase in surrounding rock mass temperature. The amount of cumulative heat loss from rock cavern type TES over a period of five-year operation was 72.7% of that from above-ground type TES. The heat loss rate of rock cavern type obtained in long-period operation showed less sensitive variations to insulation thickness than that of above-ground type TES.

A Case Study of Underwater Blasting (수중발파 사례 연구)

  • 정민수;박종호;송영석
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.57-64
    • /
    • 2004
  • There are two major types of underwater blasting at Korea, bridges and harbor construction work. Pier blasting for lay the foundation bridges construction is used dry excavation working (drilling and charging) after pump out water and then fire pump in water that is same as bench blasting. In contrast, underwater blasting for harbor construction and increase of harbor load depth is used to barge with digging equipment that is in oder to drilling on the surface and blasting work(charge, hook-up) under water. Thus, there are need to special concern such as charge method and hook-up method different from tunnel blasting work and bench blasting work. If do not use special concern breaks out dead pressure and mis fire because of there are so many difficult condition such as water pressure, obstruct field of vision. In this study underwater blasting at Busan Harbor Construction have consider with special concern that is plastic pipe charge method used to MegaMITE I and specialized buoy hook- up method make far initial system detonate on the surface used to TLD. The results is designed blast pattern charge per delay effect an inspection of verify between predict velocity and measure velocity. minimized break out mis fire consideration charge method, hook up method. According to result best underwater blasting design is 105mm drilling dia, MeGAMITE II, HiNLL Plus(non electric detonator).

Analysis of the Effect of Superplasticizer combined CASB on Ultra High Strength Mortar and Concrete Using Mineral Admixture (광물질 혼화재 사용 초고강도 모르타르 및 콘크리트에 CASB 화합 고성능감수제의 효과분석)

  • Han, Cheon-Goo;Yoo, Seung-Yeup
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.72-79
    • /
    • 2011
  • This study is performed to analyze the effects of CASB by applying the superplasticizer combined CASB on the ultra high strength mortar and concrete that uses different mineral admixture depending on whether the silica fume was used and the results are summarized below. From the characteristics of Fresh mortar and concrete, the fluidity was lower in B2-CASB than B2-PC from the mixing of CASB and based on the viscosity of the mortar and concrete in the binary proportion but in the ternary proportion, B3-CASB showed a larger fluidity than B3-PC because of a reduction in the restriction level due to the effects of an improvement of particle size distribution. The compression strength was higher in ternary proportion than in binary proportion and higher in CASB than in PC from the characteristics of hardening mortar and concrete and this is analyzed as a result of increased minuteness from the calcium silicate hydrates produced from the pozzolan reaction of a mineral admixture, SF, and also the charging effects of capillary pore of CASB. Overall, when using the nanomaterial, CASB in combination with a superplasticizer, the fluidity and the strength aspects of the ternary proportion of ultra high strength mortar and concrete with silica fume may be improved to a higher quality.

  • PDF

The Effect of Negative electric field using charged PTFE membrane on Bone Healing of Rabbit Long Bone (Charged membrane에 의한 negative electric field가 토끼 장골의 골 치유에 미치는 영향)

  • Kwon, Yong-Su;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.551-562
    • /
    • 2004
  • The purpose of this study was to evaluate the effects of negatively electric field on bone healing in rabbit segmental long bone defects using negatively charged PTFE membrane. Ten millimeter segmental defects in the rabbit radius were used as the experimental model. After membranes were then charge injected using a corona-charging apparatus, the left defects were covered with non charged PTFE membranes as control groups, whereas the right defect was covered with negatively charged PTFE membranes as test group. The animals were divided into 4 groups of 2 rabbits each, and sacrificed at 2, 4, 6, and 8 weeks. Histomorphometric analysis showed a more newly formed bone in negatively charged membrane at early healing period. At 2 weeks, the proportion of new bone formation to total defect area was 0.32% in control group, 1.10% in experimental group. At 4 weeks, the proportion of new bone formation to total defect area was 6.86% in control, and 13.75% in experimental. At 6 and 8 weeks, no obvious difference was found between the two groups but newly formed bone in test groups were slightly more than that in control groups. In conclusion, negatively charged membranes showed more newly bone tissue than noncharged membranes at an early healing period. Although the number of samples was small, this study showed that the combination of negatively electrical stimulation and P1FE membrane may be of value in long bone healing.

Estimation of Mass Size Distribution of Atmospheric Aerosols Using Real-Time Aerosol Measuring Instruments (실시간 에어로졸 측정장비를 이용한 대기 중 입자상 물질의 무게 농도 분포의 추정)

  • Ji, Jun-Ho;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.39-50
    • /
    • 2013
  • Real-time aerosol measuring instruments have been widely used for the measurement of atmospheric aerosol, diesel particulate matter, or material synthesis. A scanning mobility particle sizer (SMPS) measures the number size distribution of particles using electrical mobility detection technique. An aerodynamic particle sizer (APS) is used to determine the number concentration and the mean aerodynamic diameter of test particles. An electrical low-pressure impactor (ELPI) is a multi-stage impaction device to separate airborne particles into aerodynamic size classes using particle charging and electrical detection techniques. In this study, the performance of these instruments were evaluated to assess their ability to obtain mass concentrations from particle number concentration measurements made as a function of particle size. The effect of determination of particle density on the measurement of mass concentration was investigated for the three instruments.

Synthesis of Polyaniline/WO3 Anode for Lithium Ion Capacitor and Its Electrochemical Characteristics under Light Irradiation (리튬이온커패시터용 Polyaniline/WO3 음극 제조 및 이의 광 조사에 따른 전기화학적 특성 변화)

  • Park, Yiseul
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.884-889
    • /
    • 2018
  • In this study, polyaniline $(PANI)/WO_3$ electrode was prepared as an anode of a lithium ion capacitor, and its electrochemical characteristics were measured and analyzed. When PANI was electrochemically deposited on the surface of $WO_3$ electrode, the capacity of $PANI/WO_3$ was improved with increase of the deposited amounts of PANI. Furthermore, the effect of light irradiation on capacity and coulombic efficiency was examined by irradiating sunlight during charging and discharging. When the light was irradiated to the $WO_3$ electrode and the $PANI/WO_3$ electrode, those capacities and coulombic efficiencies were increased compared to that measured under the dark condition. It is attributed to the photocatalytic property of $WO_3$ that can generate photoelectrons by light irradiation. In $PANI/WO_3$ electrode, PANI also can be excited under the light irradiation with affecting the electrochemical property of electrode. The photoelectrons improve the capacity by participating in the intercalation of $Li^+$ ions, and also improve the coulombic efficiency by facilitating electrons' transport. Under the dark condition, the capacity of $PANI/WO_3$ was gradually reduced with increase of cycles due to a poor stability of PANI. However, the stability of PANI was significantly improved by the light irradiation, which is attributed to the oxidation-reduction reaction originated from the photogenerated electrons and holes in $PANI/WO_3$.