DOI QR코드

DOI QR Code

A Comparative Study on Heat Loss in Rock Cavern Type and Above-Ground Type Thermal Energy Storages

암반공동 열에너지저장과 지상식 열에너지저장의 열손실 비교 분석

  • 박정욱 (한국지질자원연구원 지구환경연구본부) ;
  • 류동우 (한국지질자원연구원 지구환경연구본부) ;
  • 박도현 (한국지질자원연구원 지구환경연구본부) ;
  • 최병희 (한국지질자원연구원 지구환경연구본부) ;
  • 신중호 (한국지질자원연구원 지구환경연구본부) ;
  • 선우춘 (한국지질자원연구원 지구환경연구본부)
  • Received : 2013.10.14
  • Accepted : 2013.10.28
  • Published : 2013.10.31

Abstract

A large-scale high-temperature thermal energy storage(TES) was numerically modeled and the heat loss through storage tank walls was analyzed using a commercial code, FLAC3D. The operations of rock cavern type and above-ground type thermal energy storages with identical operating condition were simulated for a period of five consecutive years, in which it was assumed that the dominant heat transfer mechanism would be conduction in massive rock for the former and convection in the atmosphere for the latter. The variation of storage temperature resulting from periodic charging and discharging of thermal energy was considered in each simulation, and the effect of insulation thickness on the characteristics of heat loss was also examined. A comparison of the simulation results of different storage models presented that the heat loss rate of above-ground type TES was maintained constant over the operation period, while that of rock cavern type TES decreased rapidly in the early operation stage and tended to converge towards a certain value. The decrease in heat loss rate of rock cavern type TES can be attributed to the reduction in heat flux through storage tank walls followed by increase in surrounding rock mass temperature. The amount of cumulative heat loss from rock cavern type TES over a period of five-year operation was 72.7% of that from above-ground type TES. The heat loss rate of rock cavern type obtained in long-period operation showed less sensitive variations to insulation thickness than that of above-ground type TES.

본 연구에서는 FLAC3D를 이용해 대용량 고온 열에너지저장소가 암반공동과 지상에 위치하는 경우를 각각 모델링하고 운영기간 5년 동안의 비정상상태해석을 수행하여 저장소 외벽을 통한 열손실을 비교 분석하였다. 두 저장모델의 운영 조건 및 입력물성은 모두 동일하나, 암반공동 열에너지저장소는 주변 암반의 전도 열전달에 의해서만 열손실이 발생하고, 지상 저장소는 대기의 대류 열전달에 의해서 열손실이 발생하는 것으로 가정하였다. 열에너지의 반복적인 주입과 토출에 따른 저장온도의 변화를 고려하여 수치해석모델을 작성하였으며, 단열재 두께에 따른 열손실 특성을 함께 검토하였다. 해석 결과, 지상식 저장시설은 운영 기간이 경과하더라도 일정한 열손실률을 보이는 반면 암반공동 저장시설의 열손실률은 운영 초기 단계에서 급격히 감소하여 일정한 값으로 수렴하는 경향을 보였다. 이러한 열손실의 감소는 시간 경과에 따라 주변 암반의 온도가 상승함으로써 저장소외벽에서의 열유속이 감소하기 때문으로 판단할 수 있다. 운영 후 5년 경과 시 암반공동 열에너지저장소의 누적열손실량은 지상저장소에 비해 약 72.7%로 나타났으며, 암반공동 저장시설의 열손실 특성은 주변 암반의 히팅 효과로 인해 지상식 저장시설에 비해 단열재 두께에 대한 민감도 및 의존도가 상대적으로 낮은 것으로 분석되었다.

Keywords

References

  1. 김진수, 강용혁, 2006, 고온 축열 기술개발동향. 태양에너지, Vol. 5, No. 2, pp. 12-19.
  2. ASHRAE, 2009, ASHRAE Handbook-Fundamentals.
  3. Bergman, T,L., A.S. Lavine, F.P. Incropera, D.P. DeWitt, 2011, Fundamentals of Heat and Mass Transfer. Seventh edition, Wiley, Hoboken, pp. 605.
  4. Coutier, J.P., E. Farber, 1982, Two applications of a numerical approach of heat transfer process within rock beds. Solar Energy, Vol. 29, pp. 451-462. https://doi.org/10.1016/0038-092X(82)90053-6
  5. Itasca Consulting Group Inc., 2009, FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) version 4.0. Minneapolis: ICG.
  6. Kim, Y.M., J.H. Lee, S.J. Kim, D. Favrat, 2012, Potential and evolution of compressed air energy storage: energy and exergy analyses. Entropy, Vol. 14, pp. 1501-1521. https://doi.org/10.3390/e14081501
  7. Korea Meteorological Administration, 2012, Annual climatological report.
  8. Park, D., H.M. Kim, D.W. Ryu, B.H. Choi, C. Sunwoo, K.C. Han, 2012, Numerical study on the thermal stratification behavior in underground rock cavern for thermal energy storage (TES). Tunnel and Underground Space, Vol. 22, No. 3, pp. 188-195. https://doi.org/10.7474/TUS.2012.22.3.188
  9. Park, J.W., D.W. Ryu, D. Park, B.H. Choi, J.H. Synn, C. Sunwoo, 2013, Thermal energy balance analysis of a packed bed for rock cavern thermal energy storage. Tunnel and Underground Space, Vol. 23, No. 3, pp. 241-259. https://doi.org/10.7474/TUS.2013.23.3.241
  10. RWE Power, 2011, ADELE-Adiabatic compressed-air energy storage for electricity Supply. Brochure, http://www.rwe.com.
  11. Schumann, T.E., 1929, Heat transfer: a liquid flowing through a porous prism. Journal of the Franklin Institute. Vol. 208, pp. 405-416. https://doi.org/10.1016/S0016-0032(29)91186-8
  12. Shin, B.C., S.D. Kim, K.Y. Park, W.H. Park, 1987, Characteristics of high-temperature energy storage materials. Journal of the Korean solar energy society, Vol. 7, No. 1, pp. 61-74.
  13. SKANSKA, 1983, Swedish rock technique: Lyckebo seasonal energy storage plant, SKANSKA technical brochure.
  14. Zanganeh, G., A. Pedretti, S. Zavattoni, M. Barbato, A. Steinfeld, 2012, Packed-bed thermal storage for concentrated solar power-Pilot-scale demonstration and industrialscale design. Solar Energy, Vol. 86, pp. 3084-3098. https://doi.org/10.1016/j.solener.2012.07.019
  15. Zunft, S., C. Jakiel, M. Koller, C. Bullough, 2006, Adiabatic compressed air energy storage for the grid integration of wind power. Sixth international workshop on large-scale Integration of wind power and transmission networks for offshore wind farms, pp. 26-28.