• 제목/요약/키워드: 암반공동 열에너지저장

검색결과 14건 처리시간 0.017초

암반공동 열에너지저장과 지상식 열에너지저장의 열손실 비교 분석 (A Comparative Study on Heat Loss in Rock Cavern Type and Above-Ground Type Thermal Energy Storages)

  • 박정욱;류동우;박도현;최병희;신중호;선우춘
    • 터널과지하공간
    • /
    • 제23권5호
    • /
    • pp.442-453
    • /
    • 2013
  • 본 연구에서는 FLAC3D를 이용해 대용량 고온 열에너지저장소가 암반공동과 지상에 위치하는 경우를 각각 모델링하고 운영기간 5년 동안의 비정상상태해석을 수행하여 저장소 외벽을 통한 열손실을 비교 분석하였다. 두 저장모델의 운영 조건 및 입력물성은 모두 동일하나, 암반공동 열에너지저장소는 주변 암반의 전도 열전달에 의해서만 열손실이 발생하고, 지상 저장소는 대기의 대류 열전달에 의해서 열손실이 발생하는 것으로 가정하였다. 열에너지의 반복적인 주입과 토출에 따른 저장온도의 변화를 고려하여 수치해석모델을 작성하였으며, 단열재 두께에 따른 열손실 특성을 함께 검토하였다. 해석 결과, 지상식 저장시설은 운영 기간이 경과하더라도 일정한 열손실률을 보이는 반면 암반공동 저장시설의 열손실률은 운영 초기 단계에서 급격히 감소하여 일정한 값으로 수렴하는 경향을 보였다. 이러한 열손실의 감소는 시간 경과에 따라 주변 암반의 온도가 상승함으로써 저장소외벽에서의 열유속이 감소하기 때문으로 판단할 수 있다. 운영 후 5년 경과 시 암반공동 열에너지저장소의 누적열손실량은 지상저장소에 비해 약 72.7%로 나타났으며, 암반공동 저장시설의 열손실 특성은 주변 암반의 히팅 효과로 인해 지상식 저장시설에 비해 단열재 두께에 대한 민감도 및 의존도가 상대적으로 낮은 것으로 분석되었다.

열에너지 저장 암반공동의 형상 및 레이아웃 설계 가이드라인 (Guidelines for Designing the Shape and Layout of Thermal Energy Storage (TES) Rock Caverns)

  • 박도현;박의섭
    • 터널과지하공간
    • /
    • 제25권2호
    • /
    • pp.115-124
    • /
    • 2015
  • 열에너지 저장은 고온 또는 저온의 잉여 열에너지를 저장하여 수요 발생 시 사용하기 위한 기술로서 에너지의 수요와 공급 사이의 불균형을 해소하고, 이를 통해 에너지 시스템의 효율을 향상시킬 수 있다. 특히 간헐적인 신재생에너지 자원을 열에너지 형태로 변환하거나 저장함으로써 에너지 믹스에서 신재생에너지의 비중을 제고할 수 있으며, 이를 위해서는 열에너지 저장 장치와의 조합이 반드시 필요하다. 지하 암반공동을 이용한 열에너지 저장은 높은 건설비용이 수반되어 그 활용이 제한적이지만, 대규모의 열에너지를 장기간 저장할 수 있는 가장 현실적인 방법이다. 또한 기후조건에 따라 외부로의 열손실이 영향을 받는 지상의 열저장소와는 달리, 열저장 지하 암반공동은 장기 운영 시 주변 암반의 히팅에 따른 열손실의 감소를 기대할 수 있다. 본고에서는 열저장 암반공동의 형상 및 다중배치 설계 시 고려해야 할 주요 인자들을 소개하고, 저장공간의 설계에 대한 가이드라인을 제안하였다.

지하 열에너지 저장 기술 및 스웨덴 암반공동내 열수 저장 사례 (Technologies of Underground Thermal Energy Storage (UTES) and Swedish Case for Hot Water)

  • 박도현;김형목;류동우;최병희;선우춘;한공창
    • 터널과지하공간
    • /
    • 제22권1호
    • /
    • pp.1-11
    • /
    • 2012
  • 열에너지 저장은 고온 또는 저온의 열에너지를 임시 저장하는 것으로서 에너지 수요와 공급 사이의 불균형을 줄일 수 있고, 이를 통해 에너지를 절약하고 에너지 이용효율을 향상시킬 수 있다. 특히 간헐적으로 에너지를 생산하는 신재생에너지의 경우 에너지 저장 장치와의 조합은 필수적이다. 또한 지하 암반의 낮은 열전도도와 높은 열용량을 이용하여 지하에 열에너지를 저장하는 경우 열손실을 최소화하여 추가적인 효율 향상이 기대된다. 본 고에서는 지하 열에너지 저장 기술을 조사 분석하고 스웨덴에 암반공동내 열에너지 저장 사례를 소개하였다.

열에너지 저장을 위한 지하 암반공동 내 열성층화 거동에 대한 수치해석적 연구 (Numerical Study on the Thermal Stratification Behavior in Underground Rock Cavern for Thermal Energy Storage (TES))

  • 박도현;김형목;류동우;최병희;선우춘;한공창
    • 터널과지하공간
    • /
    • 제22권3호
    • /
    • pp.188-195
    • /
    • 2012
  • 본 연구에서는 전산유체역학 코드인 FLUENT를 이용하여 열에너지 지하 저장을 위한 최초의 대규모 암반공동인 스웨덴 Lyckebo 저장소의 열성층화 거동을 분석하였다. 열에너지의 반복적인 저장 및 생산으로 인한 주변 암반의 히팅이 열성층화와 열손실에 미치는 영향을 분석하기 위해 암반의 온도조건을 달리하여 열전달 해석을 수행하였으며, 성층화 지수를 토대로 열에너지 저장 후 시간경과에 따른 열성층화의 변화를 정량적으로 분석하였다. 분석결과, 주변 암반이 히팅되지 않은 저장공동의 초기 운영단계에서는 시간경과에 따라 저장된 열에너지의 성층화가 빠르게 저하되는것으로 나타났으며, 저장공동의 운영기간이 늘어남에 따라 주변 암반의 히팅으로 인해 열성층화의 변화 및 열손실이 줄어드는 것을 확인하였다.

지하공동 열에너지 저장을 위한 축열 매질의 기술 현황 검토 (Review on Thermal Storage Media for Cavern Thermal Energy Storage)

  • 박정욱;박도현;최병희;한공창
    • 터널과지하공간
    • /
    • 제22권4호
    • /
    • pp.243-256
    • /
    • 2012
  • 에너지의 효과적인 저장과 관리는 에너지 공급과 수요의 시간적 양적 불균형을 해소하고, 에너지 이용효율을 향상시킬 수 있다는 점에서 새로운 에너지원을 개발하는 일만큼 중요하다. 열에너지 저장 시스템은 산업폐열이나 태양열과 같은 열원 기반의 에너지를 저장하는 시스템으로서, 대용량 저장 시설에 암반 지하공동을 활용하는 경우 주변 암반의 낮은 열전달 특성과 높은 화학적 안정성을 통해 보다 효율적인 저장 시스템을 구축할 수 있다는 장점이 있다. 본 연구에서는 열에너지 저장 방식과 저장 매질의 일반적인 특성과 열에너지 저장사례에 대하여 살펴보고, 지하공동을 활용한 열에너지 저장 시스템에 대한 각 저장 매질의 적용성에 대해 개괄적으로 검토하였다.

암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석 (Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage)

  • 박정욱;;류동우;신중호;박의섭
    • 터널과지하공간
    • /
    • 제25권2호
    • /
    • pp.155-167
    • /
    • 2015
  • 본 연구에서는 TOUGH2-FLAC3D 연계해석기법을 이용하여 암반공동에 고온의 열에너지를 30년간 저장하는 경우 주변 암반에 야기되는 열-수리-역학적 연계거동을 살펴보았다. 열에너지저장에 따른 암반의 거동 특성 및 환경 영향을 예측하고 이에 대한 제어기준을 수립하기 위한 기초 연구로서, 저장소 주변 암반에서 발생하는 열-수리 흐름과 역학적 거동의 상호작용에 대하여 검토하였다. 기본해석으로서 결정질 암반 내 원통형 공동에$350^{\circ}C$의 대용량 열에너지를 저장하는 경우를 모델링하였으며, 열에너지저장소의 단열성능은 고려하지 않았다. 암반 내 열전달의 주요 메카니즘은 암반의 전도에 의한 것으로 판단되며, 암반의 역학적 거동은 수리적 요소보다는 열적 요소에 지배적인 영향을 받는 것으로 나타났다. 암반과 지하수 가열에 따른 유효응력 재분포 양상과 열팽창으로 인한 암반 변위 및 지표 융기를 검토하였으며, 주변 암반에서의 전단파괴 위험도를 정량적인 수치를 통해 제시하였다. 암반 가열에 따른 열팽창으로 인하여 지표면에서 수 cm의 융기가 발생하였으며, 저장공동 상부에 인장응력이 크게 발달하면서 전단파괴의 위험도가 증가하는 것으로 나타났다.

열에너지 저장용 암반 공동의 최적 종횡비 결정을 위한 역학적 안정성 해석 (Mechanical Stability Analysis to Determine the Optimum Aspect Ratio of Rock Caverns for Thermal Energy Storage)

  • 박도현;류동우;최병희;선우춘;한공창
    • 터널과지하공간
    • /
    • 제23권2호
    • /
    • pp.150-159
    • /
    • 2013
  • 일반적으로 열저장소의 종횡비(폭에 대한 높이의 비)가 커짐에 따라 저장된 열에너지의 성층화가 높게 유지될 수 있는 것으로 알려져 있다. 따라서 열저장소의 열적 성능을 높이기 위해서는 저장소 종횡비를 크게 설정하는 것이 유리할 것이다. 그러나 종횡비의 증가에 따라 저장소의 폭에 비해 높이가 커지고, 이는 열저장소의 구조적 안정성 측면에서 불리하게 작용할 수 있으므로 저장소의 최적 종횡비 결정시 열적 성능 분석과 더불어 역학적 안정성에 대한 정량적인 분석이 수행되어야 할 것이다. 본 연구에서는 지하 열에너지 저장을 위한 사일로형 암반공동의 종횡비 변화에 따른 역학적 안정성을 수치해석적으로 조사하였다. 적용한 종횡비는 1-6의 범위이었고, 전단강도 감소기법에 의한 안전율을 토대로 암반공동의 역학적 안정성을 평가하였다. 종횡비별 안정성 분석 결과, 암반공동의 종횡비가 증가함에 따라 안전율이 감소하는 경향을 보였으며, 주변 암반의 측압계수가 안정성에 미치는 영향이 큰 것으로 분석되었다. 또한 동일한 암반특성 및 종횡비 조건에서 암반공동의 규모(저장 용량)가 줄어듦에 따라 안정성이 향상되는 것으로 나타나, 큰 규모의 단일 암반공동을 소규모의 다중 암반공동으로 분할함으로써 높은 종횡비의 암반공동 설계가 가능한 것을 알 수 있었다.

열-역학적 연계해석 모델을 이용한 다중 열저장공동 안정성 분석 (Stability Analysis of Multiple Thermal Energy Storage Caverns Using a Coupled Thermal-Mechanical Model)

  • 김현우;박도현;박의섭;선우춘
    • 터널과지하공간
    • /
    • 제24권4호
    • /
    • pp.297-307
    • /
    • 2014
  • 암반공동을 이용한 열에너지 저장은 대용량 저장이 가능하며 열저장매체를 선택할 수 있는 장점이 있다. 본 연구에서는 사일로 형태의 열저장공동이 지반 내 두 개 이상 배치될 때 공동 사이에 형성되는 암반 필라의 안정성에 대해 3차원 유한차분해석 프로그램인 $FLAC^{3D}$를 이용하여 분석하였으며, 저장된 열에너지로 인해 암반에 발생하는 열응력을 반영할 수 있도록 열-역학적 연계모델을 사용하였다. 해석 결과, 열에너지 장기 저장으로 인해 암반 필라에 작용하는 최대주응력이 상당량 증가하였으며, 필라 폭이 좁아질수록 근접한 열원 때문에 열응력 증가량도 커짐을 확인하였다. 필라 안정성에 영향을 미치는 주요인자로서 저장공동 간격, 측압계수, 심도를 선정하고 민감도 분석을 실시한 결과, 측압계수, 저장공동 간격, 심도 순서로 영향력이 크게 평가되었다. 저장공동 간격의 경우 동일한 크기의 공동 건설 시 필라 폭을 최소 저장공동 직경 이상 확보해야 할 것으로 판단되었다. 큰 규모의 저장공동 주변에 소규모 수직갱이 설치될 때는 최소한 저장공동 직경의 0.5배 이상 이격함으로써 크기 차이로 인해 수직갱에 응력이 집중되는 현상을 해소할 수 있었다. 또한 최대수평주응력 작용방향과 공동 중심을 잇는 축이 평행하도록 배치하여 저장공동에 의한 방패효과가 발휘될 수 있게 함으로써 현지응력이 공동 사이 암반 필라에 미치는 영향을 최소화할 수 있었다.

열에너지 저장소 내 열성층화를 평가하기 위한 기법 (Methods to Characterize the Thermal Stratification in Thermal Energy Storages)

  • 박도현;류동우;최병희;선우춘;한공창
    • 터널과지하공간
    • /
    • 제23권1호
    • /
    • pp.78-85
    • /
    • 2013
  • 열에너지를 성층화하여 저장하는 주된 목적은 에너지의 열역학적 질을 유지하기 위한 것으로서 열에너지의 성층화를 통해 필요시 원하는 온도에서 열에너지 활용이 가능하다. 저장소 내 열에너지의 온도에 따른 분리, 즉 열성층화는 이와 같은 열에너지의 활용에 영향을 미치는 핵심 인자이다. 본 논문에서는 열성층화의 정도를 평가할 수 있는 기존에 제안된 기법들을 소개하였으며, 특히 열에너지의 주입, 저장, 배출 과정 동안 열저장소의 성층화와 관련된 성능을 결정하는 데 사용될 수 있는 기법들을 중심으로 개념 및 특징을 살펴보았다. 또한 열성층화 지수를 이용하는 방법을 토대로 스웨덴 Lyckebo 암반공동 내 열에너지의 성층도를 비교 분석하여 기법의 적용성을 조사하였다.

확률론적 해석에 기반한 다중 열저장공동의 적정 이격거리 분석 (Analysis of the Optimal Separation Distance between Multiple Thermal Energy Storage (TES) Caverns Based on Probabilistic Analysis)

  • 박도현;김현우;박정욱;박의섭;선우춘
    • 터널과지하공간
    • /
    • 제24권2호
    • /
    • pp.155-165
    • /
    • 2014
  • 다중 열저장공동은 열에너지의 대규모 저장, 열적 성능 향상을 위한 높은 종횡비의 저장소 설계에 활용될 수 있다. 또한 긴 터널형의 단일공동이 열생산 및 주입을 위한 지상설비와의 연결에 적합하지 않은 경우, 길이를 줄인 다중 암반공동의 활용을 고려할 필요가 있다. 다중 열저장공동 활용시 공동간의 이격거리는 저장공간 설계시 고려해야 하는 주요 설계인자 중 하나이며, 정량적인 안정성 평가기준을 토대로 적정 이격거리가 산정되어야 한다. 본 논문에서는 대규모 열에너지 저장을 위한 다중 암반공동 계획시 공동간 이격거리를 결정하기 위한 수치 해석적 접근법에 대해 기술하였다. 다중 암반공동의 안정성 평가를 위해 기존의 결정론적 접근법과 달리 확률밀도에 의해 입력 매개변수의 불확실성을 정량적으로 고려할 수 있는 확률론적 해석기법을 이용하였으며, 집단열수 공급을 위한 다중 암반공동의 개념모델 설계에 적용하였다. 본 적용을 통해 확률론적 해석기법이 다중 암반공동의 이격거리 산정을 위한 의사결정 도구로서 유용하게 활용될 수 있음을 확인할 수 있었으며, 결정론적 해석결과와의 비교 분석으로부터 결정론적 접근법 적용시 안정성 평가기준을 신중히 설정할 필요가 있는 것으로 검토되었다.