• Title/Summary/Keyword: charge Injection

Search Result 365, Processing Time 0.03 seconds

Size and Crystal Structure Dependence of Photochromism of Nanocrystalline WO3 and MoO3 Prepared by Acid-Precipitation Method

  • Jun Young, Kwak;Young Hee, Jung;Yeong Il, Kim
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • Nanocrystallne WO3 and MoO3 with several different sizes and crystal structures were prepared by simple acid precipitation and subsequent heat treatment. The photochromic (PC) properties of these samples were comparatively investigated in powder state by monitoring diffuse reflectance spectral changes after bandgap irradiation. The PC effect of hexagonal WO3 and monoclinic WO3 strongly depended upon crystallite size rather than crystal structure. The smaller the crystallite size, the better the PC effect. However, orthorhombic WO·H2O and MoO3 having hexagonal and orthorhombic structures did not follow this trend. One consistent result for all WO3 and MoO3 samples is that the heat treatment in air, which changes crystallinity, whether it changes the crystal structure or only the crystallite size, reduces the PC effect. Since the thermal treatment reduces the surface oxygen defect sites, we believe that the PC effect of WO3 and MoO3 depends critically on the surface oxygen defect sites that serve as deep trap sites for photogenerated electrons and oxygen radical holes. We also found that the proton insertion claimed by double charge injection model is not critical for the PC effect.

Emission Characteristics of Blue Fluorescence Tandem OLED with Materials of CGL (CGL의 재료에 따른 청색 형광 Tandem OLED의 발광 특성)

  • Kwak, Tea-Ho;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.210-214
    • /
    • 2014
  • We investigated emission characteristics of tandem organic light emitting devices (OLEDs) with p-type materials as charge generation layer. The tandem OLEDs were fabricated by using $MoO_x$, $WO_x$, C60 and HATCN as p-type material or not using p-type material for charge generation. When HATCN was used as p-type material, it showed high current density at low applied voltage, but increase of efficiency was small because of charge unbalance in emitting layer. In case of tandem OLED not using p-type material, applied voltage increased remarkably because of difficulty of hole injection. In case of $MoO_x$, $WO_x$ or C60 as p-type material, current emission efficiency increased greatly. In particular, current emission efficiency of tandem OLED using $MoO_x$ as p-type material increased up to 3 times than current emission efficiency of single OLED. The Commission Internationale de l'Eclairage (CIE) 1931 color coordinates were changed by overlapping of 504 nm emission wavelength. As a result, emission efficiency of tandem OLED improved compared with single OLED, but driving voltage also increased by increase of organic layer thickness.

Thioacetic-Acid Capped PbS Quantum Dot Solids Exhibiting Thermally Activated Charge Hopping Transport

  • Dao, Tung Duy;Hafez, Mahmoud Elsayed;Beloborodov, I.S.;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.457-465
    • /
    • 2014
  • Size-controlled lead sulfide (PbS) quantum dots were synthesized by the typical hot injection method using oleic acid (OA) as the stabilizing agent. Subsequently, the ligand exchange reaction between OA and thioacetic acid (TAA) was employed to obtain TAA-capped PbS quantum dots (PbS-TAA QDs). The condensation reaction of the TAA ligands on the surfaces of the QDs enhanced the conductivity of the PbS-TAA QDs thin films by about 2-4 orders of magnitude, as compared with that of the PbS-OA QDs thin films. The electron transport mechanism of the PbS-TAA QDs thin films was investigated by current-voltage (I-V) measurements at different temperatures in the range of 293 K-473 K. We found that the charge transport was due to sequential tunneling of charge carriers via the QDs, resulting in the thermally activated hopping process of Arrhenius behavior.

Knock Characteristic Analysis of Gasoline and LPG Homogeneous Charge Compression Ignition Engine (가솔린과 LPG 예혼합 압축 착화 엔진의 노킹 특성)

  • Yeom, Ki-Tae;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.54-62
    • /
    • 2007
  • The knock characteristics in an engine were investigated under homogeneous charge compression ignition (HCCI) operation. Liquefied petroleum gas (LPG)and gasoline were used as fuels and injected at the intake port using port fuel injection equipment. Di-methyl ether (DME) was used as an ignition promoter and was injected directly into the cylinder near compression top dead center (TDC). A commercial variable valve timing device was used to control the volumetric efficiency and the amount of internal residual gas. Different intake valve timingsand fuel injection amounts were tested to verify the knock characteristics of the HCCI engine. The ringing intensity (RI) was used to define the intensity of knock according to the operating conditions. The RI of the LPG HCCI engine was lower than that of the gasoline HCCI engine at every experimental condition. The indicated mean effective pressure (IMEP) dropped when the RI was over 0.5 MW/m2and the maximum combustion pressure was over 6.5MPa. There was no significant relationship between RI and fuel type. The RI can be predicted by the crank angle degree (CAD) at 50 CA. Carbon monoxide (CO) and hydrocarbon (HC) emissions were minimized at high RI conditions. The shortest burn duration under low RI was effective in achieving low HC and CO emissions.

방사선에 조사된 생쥐의 간 및 신장에서 홍삼 추출물의 방어효과

  • Park, Yeong-Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.5 no.1
    • /
    • pp.120-125
    • /
    • 1992
  • This study was prepared to observe the charge of tissues weight, glutamate oxaloacetate transminase(GOT) and glutamate pyruvate transminase(GPT) activities in the liver and kidney treated with red ginseng extract injection in the gamma ray(5.0 Gy) irradiated mice groups were divied in to control, red ginseng extract injection, irradiation after saline injection and irradiation after red ginseng extract injection. The GOT activity showed earlier recovery at irradiation after red ginseng extract injection group than irradiation after saling injection group in the liver and kidney. The GPT activity showed earlier recovery at irradiation after red ginseng extract injection group than irradiation after saling injection group in the liver and kidney. The above result suggest that red ginseng extract have the protection effect on the change of GOT and GPT activity after radiation injury in the liver and kidney.

  • PDF

Single Crystalline CoFe/MgO Tunnel Contact on Nondegenerate Ge with a Proper Resistance-Area Product for Efficient Spin Injection and Detection

  • Jeon, Kun-Rok;Min, Byoung-Chul;Lee, Hun-Sung;Shin, Il-Jae;Park, Chang-Yup;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2010.06a
    • /
    • pp.96-96
    • /
    • 2010
  • We report the proper resistance-area products in the single crystalline bcc CoFe/MgO tunnel contact on nondegenerate n-Ge desirable for efficient spin injection and detection at room temperature. The electric properties of the crystalline CoFe(5 nm)/MgO(1.5,2.0,2.5 nm)/n-Ge(001) tunnel contacts have been investigated by I-V-T and C-V measurements. Interestingly, the tunnel contact with the 2-nm MgO exhibits the ohmic behavior with low resistance-area products, satisfying the theoretical conditions required for significant spin injection and detection. This result is ascribed to the presence of MgO layer between CoFe and n-Ge, enhancing the Schottky pinning parameter as well as shifting the charge neutrality level.

  • PDF

The Effects of Engine Speed and Load of the Partial Premixed Diesel Compressed Ignition Engine Applied with the Split Injection Method on Exhaust Gas and IMEP Characteristics (2단 분사방식을 적용한 부분 예혼합 디젤 압축착화 연소 엔진의 회전속도 및 부하 변화가 배출 가스 및 IMEP특성에 미치는 영향)

  • Kang, Jeong-Ho;Lee, Sung-Man;Chung, Jae-Woo;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.162-170
    • /
    • 2007
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. Anew concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. Due to such social requirement, technologically advanced countries are making efforts to develop an environment-friendly vehicle engine at the nation-wide level in order to respond to the reinforced emission control. As a core combustion technology among new combustion technologies for the next generation engine, the homogeneous charge compression ignition (HCCI) is expanding its application range by adopting multiple combustion mode, catalyst, direct fuel injection and partially premixed combustion. This study used a 2-staged injection method in order to apply the HCCI combustion method without significantly altering engine specifications in the aspect of multiple combustion mode and practicality by referring to the results of studies on the HCCI engine. And it is investigated that the effects of the engine rpm and load(or A/F) to emission characteristics.

Analysis of Positive Bias Temperature Instability Degradation Mechanism in n+ and p+ poly-Si Gates of High-Voltage SiO2 Dielectric nMOSFETs (고전압 SiO2 절연층 nMOSFET n+ 및 p+ poly Si 게이트에서의 Positive Bias Temperature Instability 열화 메커니즘 분석)

  • Yeohyeok Yun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.180-186
    • /
    • 2023
  • Positive bias temperature instability (PBTI) degradation of n+ and p+ poly-Si gate high-voltage(HV) SiO2 dielectric nMOSFETs was investigated. Unlike the expectation that degradation of n+/nMOSFET will be greater than p+/nMOSFET owing to the oxide electric field caused by the gate material difference, the magnitude of the PBTI degradation was greater for the p+/nMOSFET than for the n+/nMOSFET. To analyze the cause, the interface state and oxide charge were extracted for each case, respectively. Also, the carrier injection and trapping mechanism were analyzed using the carrier separation method. As a result, it has been verified that hole injection and trapping by the p+ poly-Si gate accelerates the degradation of p+/nMOSFET. The carrier injection and trapping processes of the n+ and p+ poly-Si gate high-voltage nMOSFETs in PBTI are detailed in this paper.

Development of combustion zone monitoring system for a blast furnace (용광로 연소대 관리시스템 개발)

  • Choi, Tae-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.318-322
    • /
    • 1997
  • A prototype of combustion zone monitoring system as been developed and installed into tuyeres of the blast furnace. The system consists of CCD(charge coupled device) cameras, sonic flow meters, an image processor and a personal computer. The personal computer collects raceway luminance data and operational data from the image processor that is connected to the color CCD camera from the blast furnace process computer, respectively. In addition, the sonic flow meters supply coal injection rate data to the personal computer. Then, the personal computer evaluates the combustion conditions with the raceway inspection algorithm. This integrated monitoring system allows us to detect abnormal raceway conditions and the clogging status of coal injection pipe. The image processing techniques of the system enable us to effectively monitor unburnt coal sticking to tuyere tip and injection lance wear conditions. Such a developed system ensures rapid and precise raceway inspection. The image processing capability of the system has helped operator to early detect both the unburnt coal sticking problem and the errosion problem of injection lance. Furthermore, the system could control the abnormal raceway condition based the the analysis results obtained from combustion monitoring.

  • PDF

Electron Injection Mechanisms Varied by Conjugated Polyelectrolyte Electron Transporting Layers in Polymer Light-Emitting Diodes (고분자 발광다이오드에서 공액고분자 전해질 전자수송층에 의해 변화되는 전자주입 메카니즘)

  • Um, Seung-Soo;Park, Ju-Hyun
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.519-524
    • /
    • 2012
  • Capacitance measurements of the polymer light-emitting diodes (PLEDs) with conjugated polyelectrolyte (CPE) electron transporting layers (ETLs) provide important information of device physics for understanding the function of CPEs as ETLs, together with current density-voltage-luminescence measurements. We investigated the counterion-dependent capacitance behaviors that present a highly negative or positive capacitance at the low frequency, and suggested different carrier injection mechanisms. Capacitance model study reveals that the electron injection mechanism can be described either by the dipole alignment scheme or by electronic charge carrier accumulation at the cathode/ETL/emission layer interfaces.