• 제목/요약/키워드: characteristic matrix

검색결과 544건 처리시간 0.024초

1.5T 자기공명영상을 이용한 물리적 영상 특성에 대한 연구 (Study on the Physical Imaging Characteristics by Using Magnetic Resonance Imaging 1.5T)

  • 민정환;정회원;한지현;이시내;박장호;김기원;김현수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권5호
    • /
    • pp.329-334
    • /
    • 2019
  • This study was purpose to quantitative evaluation of noise power spectrum(NPS) and studied the quantitative evaluation and characteristics of modulation transfer function(MTF) by obtain the optimal edge image by using Coil in magnetic resonance imaging(MRI) equipment through Fujita theory using edge method. The MRI equipment was used (Tim AVANTO 1.5T, Siemense healthcare system, Germany) and the head matrix coil were 12channels(elements) receive coil. The NPS results of showed the best value of 0.004 based on the T2 Nyquist frequency of $1.0mm^{-1}$, and the MTF results of showed that the T1 and T2 values were generally better than the T1 CE and T1 CE FC values. The characteristics of this study were to explain the characteristic method of image quality evaluation in general. To present the quantitative evaluation process and results in the evaluation of MRI image characteristics in radiology.

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

Deep learning improves implant classification by dental professionals: a multi-center evaluation of accuracy and efficiency

  • Lee, Jae-Hong;Kim, Young-Taek;Lee, Jong-Bin;Jeong, Seong-Nyum
    • Journal of Periodontal and Implant Science
    • /
    • 제52권3호
    • /
    • pp.220-229
    • /
    • 2022
  • Purpose: The aim of this study was to evaluate and compare the accuracy performance of dental professionals in the classification of different types of dental implant systems (DISs) using panoramic radiographic images with and without the assistance of a deep learning (DL) algorithm. Methods: Using a self-reported questionnaire, the classification accuracy of dental professionals (including 5 board-certified periodontists, 8 periodontology residents, and 31 dentists not specialized in implantology working at 3 dental hospitals) with and without the assistance of an automated DL algorithm were determined and compared. The accuracy, sensitivity, specificity, confusion matrix, receiver operating characteristic (ROC) curves, and area under the ROC curves were calculated to evaluate the classification performance of the DL algorithm and dental professionals. Results: Using the DL algorithm led to a statistically significant improvement in the average classification accuracy of DISs (mean accuracy: 78.88%) compared to that without the assistance of the DL algorithm (mean accuracy: 63.13%, P<0.05). In particular, when assisted by the DL algorithm, board-certified periodontists (mean accuracy: 88.56%) showed higher average accuracy than did the DL algorithm, and dentists not specialized in implantology (mean accuracy: 77.83%) showed the largest improvement, reaching an average accuracy similar to that of the algorithm (mean accuracy: 80.56%). Conclusions: The automated DL algorithm classified DISs with accuracy and performance comparable to those of board-certified periodontists, and it may be useful for dental professionals for the classification of various types of DISs encountered in clinical practice.

Electrochemical Oxygen Evolution Reaction on NixFe3-xO4 (0 ≤ x ≤ 1.0) in Alkaline Medium at 25℃

  • Pankaj, Chauhan;Basant, Lal
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권4호
    • /
    • pp.497-503
    • /
    • 2022
  • Spinel ferrites (NixFe3-xO4; x = 0.25, 0.5, 0.75 and 1.0) have been prepared at 550℃ by egg white auto-combustion route using egg white at 550℃ and characterized by physicochemical (TGA, IR, XRD, and SEM) and electrochemical (CV and Tafel polarization) techniques. The presence of characteristic vibration peaks in FT-IR and reflection planes in XRD spectra confirmed the formation of spinel ferrites. The prepared oxides were transformed into oxide film on glassy carbon electrodes by coating oxide powder ink using the nafion solution and investigated their electrocatalytic performance for OER in an alkaline solution. The cyclic voltammograms of the oxide electrode did not show any redox peaks in oxygen overpotential regions. The iR-free Tafel polarization curves exhibited two Tafel slopes (b1 = 59-90 mV decade-1 and b2 = 92-124 mV decade-1) in lower and higher over potential regions, respectively. Ni-substitution in oxide matrix significantly improved the electrocatalytic activity for oxygen evolution reaction. Based on the current density for OER, the 0.75 mol Ni-substituted oxide electrode was found to be the most active electrode among the prepared oxides and showed the highest value of apparent current density (~9 mA cm-2 at 0.85 V) and lowest Tafel slope (59 mV decade-1). The OER on oxide electrodes occurred via the formation of chemisorbed intermediate on the active sites of the oxide electrode and follow the second-order mechanism.

Vibrational characteristics of sandwich annular plates with damaged core and FG face sheets

  • Xi, Fei
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.65-79
    • /
    • 2022
  • The main goal of this paper is to study the vibration of damaged core laminated annular plates with FG face sheets based on a three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. In this study the effect of microcracks on the vibrational characteristic of the sandwich plate is considered. In particular, the structures are made by an isotropic core that undergoes a progressive uniform damage, which is modeled as a decay of the mechanical properties expressed in terms of engineering constants. These defects are uniformly distributed and affect the central layer of the plates independently from the direction, this phenomenon is known as "isotropic damage" and it is fully described by a scalar parameter. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular plate is assumed to have any arbitrary boundary conditions at the circular edges including simply supported, clamped and, free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution, and boundary conditions.

SAR 영상 기반 토양수분을 활용한 농업적 가뭄 분석 (Analysis of agricultural drought status using SAR-based soil moisture imageries)

  • 서찬양;이희진;이용관;정지훈;김성준;남원호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.418-418
    • /
    • 2023
  • 가뭄은 농업, 환경 및 사회경제적인 조건에 영향을 미치는 주요 자연 재해로 우리나라는 2015년부터 지속적인 가뭄 상황을 겪고 있다. 지속된 가뭄으로 인해 토양의 수분함량이 변화하여 농작물의 생장 활동 등에 영향을 미쳐 수확량이 낮아질 수 있다. 토양수분은 경사나 토질 등 지형학적인 특성에 따라 민감하게 반응하는 수문인자로, 특성을 광역적으로 정확하게 판단하기 어렵기 때문에 고해상도 원격탐사 자료를 활용하여 토양수분의 거동을 파악하는 연구들이 진행되고 있다. 특히, Synthetic Aperture Radar (SAR) 관측은 작물과 기본적인 토양의 유전체 및 기하학적 특성에 민감하게 반응하기 때문에, 토양수분 및 농업적 가뭄 분석 연구에 활용되고 있다. 본 연구는 2025년 발사될 예정인 C-band SAR 수자원 위성 산출물인 토양수분을 적용한 농업적 가뭄지수산정 알고리즘 기법 개발 연구를 위하여, 수자원 위성과 제원이 비슷한 Sentinel-1 자료를 통해 산정된 토양수분을 활용하여 농업적 가뭄지수인 Soil Moisture Drought Index (SMDI)를 산정하고자 한다. 산정된 SMDI의 검증을 위해 지점 관측된 토양수분 자료와 비교하여 Receiver Operating Characteristic (ROC) 분석 및 error matrix 기법 등을 활용하여 산정된 농업적 가뭄지수의 지역적 적용성을 파악하고자 한다. SAR 자료 기반의 농업적 가뭄지수 산정 알고리즘을 개발함으로써, 향후 제공될 수자원 위성의 자료를 활용한 가뭄 분석 연구에 활용될 수 있을 것으로 판단된다.

  • PDF

Deep learning method for compressive strength prediction for lightweight concrete

  • Yaser A. Nanehkaran;Mohammad Azarafza;Tolga Pusatli;Masoud Hajialilue Bonab;Arash Esmatkhah Irani;Mehdi Kouhdarag;Junde Chen;Reza Derakhshani
    • Computers and Concrete
    • /
    • 제32권3호
    • /
    • pp.327-337
    • /
    • 2023
  • Concrete is the most widely used building material, with various types including high- and ultra-high-strength, reinforced, normal, and lightweight concretes. However, accurately predicting concrete properties is challenging due to the geotechnical design code's requirement for specific characteristics. To overcome this issue, researchers have turned to new technologies like machine learning to develop proper methodologies for concrete specification. In this study, we propose a highly accurate deep learning-based predictive model to investigate the compressive strength (UCS) of lightweight concrete with natural aggregates (pumice). Our model was implemented on a database containing 249 experimental records and revealed that water, cement, water-cement ratio, fine-coarse aggregate, aggregate substitution rate, fine aggregate replacement, and superplasticizer are the most influential covariates on UCS. To validate our model, we trained and tested it on random subsets of the database, and its performance was evaluated using a confusion matrix and receiver operating characteristic (ROC) overall accuracy. The proposed model was compared with widely known machine learning methods such as MLP, SVM, and DT classifiers to assess its capability. In addition, the model was tested on 25 laboratory UCS tests to evaluate its predictability. Our findings showed that the proposed model achieved the highest accuracy (accuracy=0.97, precision=0.97) and the lowest error rate with a high learning rate (R2=0.914), as confirmed by ROC (AUC=0.971), which is higher than other classifiers. Therefore, the proposed method demonstrates a high level of performance and capability for UCS predictions.

Personalized Size Recommender System for Online Apparel Shopping: A Collaborative Filtering Approach

  • Dongwon Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권8호
    • /
    • pp.39-48
    • /
    • 2023
  • 본 연구는 의류의 디자인 간 치수의 불일치와 비표준화로 인해 온라인 구매 시 발생하는 치수 선택의 오류 문제를 해결할 수 있는 방안을 제시하기 위해 수행되었다. 본 논문은 구매자에게 개인화된 치수를 제시할 수 있는 기계 학습 기반 추천 시스템의 구현 방안을 다루고 있다. 온라인 상거래로부터 발생된 구매 데이터를 사용하여 비음수 행렬 분해(NMF), 특이값 행렬 분해(SVD), k-최근접 이웃(KNN), 공동 클러스터링(Co-Clustering) 등 여러 검증된 협업 필터링 알고리즘을 훈련하였고, 이들 간에 성능을 비교하였다. 연구 결과, 비음수 행렬 분해 (NMF) 알고리즘이 다른 알고리즘들보다 뛰어난 성능을 보임을 확인할 수 있었다. 동일한 계정을 사용하는 여러 구매자가 포함되는 구매 데이터의 특성에도 불구하고, 제안 모형은 충분한 정확도를 보였다. 본 연구의 결과는 치수 선택의 오류로 인한 반품률을 감소하고 전자상거래 플랫폼에서의 고객 경험을 향상시키는 데 기여할 것으로 기대된다.

Classification of mandibular molar furcation involvement in periapical radiographs by deep learning

  • Katerina Vilkomir;Cody Phen;Fiondra Baldwin;Jared Cole;Nic Herndon;Wenjian Zhang
    • Imaging Science in Dentistry
    • /
    • 제54권3호
    • /
    • pp.257-263
    • /
    • 2024
  • Purpose: The purpose of this study was to classify mandibular molar furcation involvement (FI) in periapical radiographs using a deep learning algorithm. Materials and Methods: Full mouth series taken at East Carolina University School of Dental Medicine from 2011-2023 were screened. Diagnostic-quality mandibular premolar and molar periapical radiographs with healthy or FI mandibular molars were included. The radiographs were cropped into individual molar images, annotated as "healthy" or "FI," and divided into training, validation, and testing datasets. The images were preprocessed by PyTorch transformations. ResNet-18, a convolutional neural network model, was refined using the PyTorch deep learning framework for the specific imaging classification task. CrossEntropyLoss and the AdamW optimizer were employed for loss function training and optimizing the learning rate, respectively. The images were loaded by PyTorch DataLoader for efficiency. The performance of ResNet-18 algorithm was evaluated with multiple metrics, including training and validation losses, confusion matrix, accuracy, sensitivity, specificity, the receiver operating characteristic (ROC) curve, and the area under the ROC curve. Results: After adequate training, ResNet-18 classified healthy vs. FI molars in the testing set with an accuracy of 96.47%, indicating its suitability for image classification. Conclusion: The deep learning algorithm developed in this study was shown to be promising for classifying mandibular molar FI. It could serve as a valuable supplemental tool for detecting and managing periodontal diseases.

Comparison of radiomics prediction models for lung metastases according to four semiautomatic segmentation methods in soft-tissue sarcomas of the extremities

  • Heesoon Sheen;Han-Back Shin;Jung Young Kim
    • Journal of the Korean Physical Society
    • /
    • 제80권
    • /
    • pp.247-256
    • /
    • 2022
  • Our objective was to investigate radiomics signatures and prediction models defined by four segmentation methods in using 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography (18F-FDG PET) imaging of lung metastases of soft-tissue sarcomas (STSs). For this purpose, three fixed threshold methods using the standardized uptake value (SUV) and gradient-based edge detection (ED) were used for tumor delineation on the PET images of STSs. The Dice coefficients (DCs) of the segmentation methods were compared. The least absolute shrinkage and selection operator (LASSO) regression and Spearman's rank, and Friedman's ANOVA test were used for selection and validation of radiomics features. The developed radiomics models were assessed using ROC (receiver operating characteristics) curve and confusion matrices. According to the results, the DC values showed the biggest difference between SUV40% and other segmentation methods (DC: 0.55 and 0.59). Grey-level run-length matrix_run-length nonuniformity (GLRLM_RLNU) was a common radiomics signature extracted by all segmentation methods. The multivariable logistic regression of ED showed the highest area under the ROC (receiver operating characteristic) curve (AUC), sensitivity, specificity, and accuracy (AUC: 0.88, sensitivity: 0.85, specificity: 0.74, accuracy: 0.81). In our research, the ED method was able to derive a significant model of radiomics. GLRLM_RLNU which was selected from all segmented methods as a meaningful feature was considered the obvious radiomics feature associated with the heterogeneity and the aggressiveness. Our results have apparently showed that radiomics signatures have the potential to uncover tumor characteristics.