References
- Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg 2018; 268: 70-6.
- Wong SH, Al-Hasani H, Alam Z, Alam A. Artificial intelligence in radiology: how will we be affected? Eur Radiol 2019; 29: 141-3.
- Sklan JE, Plassard AJ, Fabbri D, Landman BA. Toward content based image retrieval with deep convolutional neural networks. Proc SPIE Int Soc Opt Eng 2015; 9417: 94172C.
- Thrall JH, Li X, Li Q, Cruz C, Do S, Dreyer K, et al. Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol 2018; 15: 504-8.
- Liu Y, Balagurunathan Y, Atwater T, Antic S, Li Q, Walker RC, et al. Radiological image traits predictive of cancer status in pulmonary nodules. Clin Cancer Res 2017; 23: 1442-9.
- Schuhbaeck A, Otaki Y, Achenbach S, Schneider C, Slomka P, Berman DS, et al. Coronary calcium scoring from contrast coronary CT angiography using a semiautomated standardized method. J Cardiovasc Comput Tomogr 2015; 9: 446-53.
- Arimura H, Li Q, Korogi Y, Hirai T, Katsuragawa S, Yamashita Y, et al. Computerized detection of intracranial aneurysms for three-dimensional MR angiography: feature extraction of small protrusions based on a shape-based difference image technique. Med Phys 2006; 33: 394-401.
- Wang S, Yao J, Summers RM. Improved classifier for computer-aided polyp detection in CT colonography by nonlinear dimensionality reduction. Med Phys 2008; 35: 1377-86.
- Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent 2018; 77: 106-11.
- Lin PL, Huang PW, Huang PY, Hsu HC. Alveolar bone-loss area localization in periodontitis radiographs based on threshold segmentation with a hybrid feature fused of intensity and the H-value of fractional Brownian motion model. Comput Methods Programs Biomed 2015; 121: 117-26.
- Lin PL, Huang PY, Huang PW. Automatic methods for alveolar bone loss degree measurement in periodontitis periapical radiographs. Comput Methods Programs Biomed 2017; 148: 1-11.
- Okada K, Rysavy S, Flores A, Linguraru MG. Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans. Med Phys 2015; 42: 1653-65.
- Abdolali F, Zoroofi RA, Otake Y, Sato Y. Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and spherical harmonics. Comput Methods Programs Biomed 2017; 139: 197-207.
- Yilmaz E, Kayikcioglu T, Kayipmaz S. Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography. Comput Methods Programs Biomed 2017; 146: 91-100.
- Nibali L, Zavattini A, Nagata K, Di Iorio A, Lin GH, Needleman I, et al. Tooth loss in molars with and without furcation involvement - a systematic review and meta-analysis. J Clin Periodontol 2016, 43: 156-66.
- Goodson JM. Antimicrobial strategies for treatment of periodontal diseases. Periodontol 2000 1994; 5: 142-68.
- McFall WT Jr. Tooth loss in 100 treated patients with periodontal disease. A long-term study. J Periodontol 1982; 53: 539-49.
- Svardstrom G, Wennstrom JL. Prevalence of furcation involvements in patients referred for periodontal treatment. J Clin Periodontol 1996; 23: 1093-9.
- Graetz C, Plaumann A, Wiebe JF, Springer C, Salzer S, Dorfer CE. Periodontal probing versus radiographs for the diagnosis of furcation involvement. J Periodontol 2014; 85: 1371-9.
- Shaker ZMH, Parsa A, Moharamzadeh K. Development of a radiographic index for periodontitis. Dent J(Basel) 2021; 9: 19.
- Abbas F, Hart AA, Oosting J, van der Velden U. Effect of training and probing force on the reproducibility of pocket depth measurements. J Periodontal Res 1982; 17: 226-34.
- Bragger U. Radiographic parameters: biological significance and clinical use. Periodontol 2000 2005; 39: 73-90.
- Eickholz P. Reproducibility and validity of furcation measurements as related to class of furcation invasion. J Periodontol 1995; 66: 984-9.
- Eickholz P, Hausmann E. Accuracy of radiographic assessment of interproximal bone loss in intrabony defects using linear measurements. Eur J Oral Sci 2000; 108: 70-3.
- Muller HP, Eger T. Furcation diagnosis. J Clin Periodontol 1999; 26: 485-98.
- Mao YC, Huang YC, Chen TY, Li KC, Lin YJ, Liu YL, et al. Deep learning for dental diagnosis: a novel approach to furcation involvement detection on periapical radiographs. Bioengineering (Basel) 2023; 10: 802.
- Glick A, Clayton M, Angelov N, Chang J. Impact of explainable artificial intelligence assistance on clinical decision-making of novice dental clinicians. JAMIA Open 2022; 5: ooac031.
- Chlap P, Min H, Vandenberg N, Dowling J, Holloway L, Haworth A. A review of medical image data augmentation techniques for deep learning applications. J Med Imaging Radiat Oncol 2021; 65: 545-63.
- Graetz C, Schutzhold S, Plaumann A, Kahl M, Springer C, Salzer S, et al. Prognostic factors for the loss of molars - an 18-years retrospective cohort study. J Clin Periodontol 2015; 42: 943-50.
- Reddy MS, Aichelmann-Reidy ME, Avila-Ortiz G, Klokkevold PR, Murphy KG, Rosen PS, et al. Periodontal regeneration - furcation defects: a consensus report from the AAP Regeneration Workshop. J Periodontol 2015; 86(2 Suppl): S131-3.
- Jolivet G, Huck O, Petit C. Evaluation of furcation involvement with diagnostic imaging methods: a systematic review. Dentomaxillofac Radiol 2022; 51: 20210529.
- Alasqah M, Alotaibi FD, Gufran K. The radiographic assessment of furcation area in maxillary and mandibular first molars while considering the new classification of periodontal disease. Healthcare (Basel) 2022; 10: 1464.