• Title/Summary/Keyword: char depth

Search Result 13, Processing Time 0.024 seconds

A Study on the Burning Rate of Fire Retardant Treated Wood (난연처리된 목재의 연소속도에 관한 연구)

  • Park, Hyung-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.46-54
    • /
    • 2007
  • The purpose of this study was to examines the burning rate of fire retardant treated wood in the cone heater with a one-dimensional integral model. The wood samples used in this study were four species. The species of woods are Redwood, White oak, Douglas fir and Maple. Each sample was nominally 50mm thick and 100mm square. Samples were exposed to a range of incident heat fluxes 10 to $35kW/m^2$ using the cone heater. A one-dimension integral model has been used to predict burning rate, heat of gasification, flame heat fluxes, charring rate and char depth of samples. As a result measurement of mass loss rate, softwoods(Redwood and Douglas fir) has relatively low value than those for hardwoods(White oak and Maple). Average charring rate of woods in case of fire retardant treatment showed reduction effect of 41.29%, 50.00%, 48.18% and 60.82% for Redwood, Douglas fir, White fir and Maple, respectively. Almost all the predictions from integral model showed faster charring than those measured. Average difference between predictions and experimental data was 16%, 9.5% and 11.8% for N, F1 and F2 respectively. Water-soluble fire retardant used in this study find out more effect in hardwood than softwood from the result of measurement of mass loss rate and average charring rate.

A Study on Char Characteristics of Fire Retardant Treated Douglas Fir (난연처리된 Douglas Fir의 탄화특성에 관한 연구)

  • Park Hyung-Ju;Oh Kyu-Hyung;Kim Eung-Sik;Kim Hong
    • Fire Science and Engineering
    • /
    • v.19 no.2 s.58
    • /
    • pp.105-110
    • /
    • 2005
  • We tested the char characteristics of fire retardant treated Douglas fir at each of five constant external irradiance levels $(10,\;15,\;20,\;25\;및\;35kW/m^2)$. A Cone heater was used to expose the wood specimens to the heat flux. The size of specimens is 100- by 100- by 50-mm and the kinds of specimens are non-treated wood(N) and treated wood(F2 and f4) by water soluble fire retardants. The water-soluble fire retardants were made from mixture of aqueous solutions of monoammonium phosphate, sodium borate and zinc borate, and those are used for immersion of Douglas fir. In result of test, char fraction of fire retardant treated Douglas fir showed a considerably low char fraction than it of non-treated wood irrespective of increase of external heat flux. And char fractions has low levels with increase of fire retardant content. Burning rate of non-treated wood(N) was showed a relatively high burning rate than it of fire retardant treated wood(F2 and F4). And difference of burning rate shown more rapidly in high external irradiance than low external irradiance. When the external heat flux is $35kW/m^2$, average char rate of non-treated wood is rapidly about twice than fire retardant treated wood. Water-soluble fire retardants mixed in this study find out it has fire suppression and adiabatic effect by char layer from results of char fraction, burning rate, and char depth and rate.

Effects of Char Produced from Burning Wood Combustibles on Thermal Pyrolysis (목재 가연물의 연소 시 생성되는 탄화가 열분해에 미치는 영향)

  • Hong, Ter-Ki;Ryu, Myung-Ho;Lee, Jong Won;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.7-12
    • /
    • 2019
  • To investigate the influence of the char layer formed during the combustion process on the pyrolysis of wood combustibles, ISO 5660-1 cone calorimetry experiments and Fire dynamics simulator (FDS) simulations were performed, and the results from these two methods were compared. The wood combustible selected as the fuel for this study, Douglas fir, has been widely used for the production of building materials, furniture, etc. The heat release rate (HRR) measured from the cone calorimetry experiment was in good agreement with the result predicted by the FDS simulation. However, the FDS simulation failed to predict the heat released by the smoldering combustion process, due to the absence of the char surface reaction in the model. The FDS simulation results clearly indicate that the char layer formed on the surface of combustibles produces a thermal barrier which prevents heat transfer to the interior, thickening the thermal depth and thus reducing the pyrolysis rate of combustibles.

Report on the Improvement of PSM(Process Safety Management) System for the Prevention of Industrial Accident (산업재해예방을 위한 PSM 제도의 개선에 관한 소고)

  • Char, Soon-Chul
    • Journal of the Korean Professional Engineers Association
    • /
    • v.38 no.4
    • /
    • pp.19-22
    • /
    • 2005
  • Since 1996, like other countries the PSM(Process Safety Management) System has been applied into chemical plant in Korea in accordance with the Occupational Safety & Health Law section 49 paragraph 2. This report is to point out the status and the area of concern, further suggest alternative measures along with the wide and in-depth idea of improvement and recommendation to prevent from industrial accident.

  • PDF

Experimental Study on the Effect of Flow around Solid Combustibles and Thermal Thickness on Heat Release Rate Characteristics (고체 가연물 주위의 유동과 열적 두께의 변화가 열방출률 특성에 미치는 영향에 관한 실험적 연구)

  • Hong, Ter-Ki;Seo, Dong-Pyo;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.28-34
    • /
    • 2020
  • In this study, an ISO 5660-1 cone calorimeter experiment was conducted to examine the effects of changes in flow and thermal thickness around solid combustibles on heat release rate characteristics. Polymethyl methacrylate (PMMA) is a solid combustible material that does not generate char during the combustion reaction. Hence, it was selected for the experiment, and the thermal penetration depth was calculated to distinguish the thermal thickness of PMMA. Furthermore, the thermal decomposition characteristics were analyzed by measuring the heat release rate measured during the combustion of PMMA. This was performed after generating the forced flow around the combustibles by setting the duct flow of the cone calorimeter to 12, 24, and 40 L/s. The results confirmed that the thermal release rate of the thermally thin combustible material was not significantly affected by the change in the surrounding flow. Hence, the thermally thick combustible material was significantly affected by the change in the flow rate.

Two Cases of Primary Localized Amyloidosis of Larynx (원발성 국소 후두아밀로이드증 2례)

  • 김형태;조승호;전범조;김민식
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.9 no.2
    • /
    • pp.147-151
    • /
    • 1998
  • Primary localized laryngeal amyloidosis is an uncommon disorder of unknown cause that occurs in the absence of systemic amyloidosis or associated disease. There is a risk of either missing concomitant systemic amyloidosis or exhaustively investigating for this when it is not present through failure to appreciate the nature of the disease. We present 2 cases of primary localized laryngeal amyloidosis in supraglottic region. Biopsy of the mass of patients revealed findings consistent with amyloidosis, which were Congo red reaction with a apple green birefringence in polarized light fluorescence microscopy. An extensive workup for systemic amyloidosis was negative. All of two cases were treated by vaporization via $CO_2$ LASER using "Swiftlase Flshscan" for creating a wide, shallow char-free treatment site by precisely controlling ablation depth without causing residual thermal damage to tissue. The postoperative recovery of all cases was uneventful with good vocal quality and no aspiration. At the present time, the patients have no evidence of disease, recurrence and complication.

  • PDF

Parametric comparative study of Rocket Nozzle Convective Heat Transfer Coefficient Application of Combustion gas characteristic and Method of Analysis (해석방법 및 연소가스특성 적용에 따른 로켓 노즐 대류열전달계수의 매개변수적 비교 고찰)

  • Kim, Yonggu;Bae, Joochan;Kim, Jinok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.651-663
    • /
    • 2017
  • Experimental results of $30^{\circ}-15^{\circ}$ nozzles were compared with numerically calculated convective heat transfer coefficients using FLUENT, Boundary Layer Integration Method and Bartz predictions. Also, the convective heat transfer coefficients were calculated by using FLUENT and boundary layer integration method for NASA HIPPO nozzles according to the characteristics of combustion gas and the correlation between pressure and pressure was compared. Finally, thermal analysis of NASA HIPPO nozzle was performed to compare the ablation thickness and char depth according to the combustion gas characteristics.

  • PDF

Numerical Analysis for Thermal Response of Silica Phenolic in Solid Rocket Motor (고체 로켓 추진기관에서 실리카/페놀릭 열반응 해석 연구)

  • Seo, Sangkyu;Hahm, Heecheol;Kang, Yoongoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.521-528
    • /
    • 2017
  • In this paper, the numerical analysis for heat conduction of silica/phenolic composite material, which is used for solid rocket nozzle liner or insulator, was conducted. 1-D Finite Difference Method for the analysis of silica/phenolic during the firing of solid rocket motor was used to calculate the heat conduction considering the surface ablation and the thermal decomposition. The boundary condition at the nozzle wall took into account the convective heat transfer, which was obtained by integration equation. The numerical results of the surface ablation and char depth were compared with the results of test motor that is TPEM-10. It was found that the result of calculation is favorably agreed with the thermal response of test motor.

  • PDF

Numerical Analysis for Thermal Response of Silica Phenolic in Solid Rocket Motor (고체 로켓 추진기관에서 실리카/페놀릭 열반응 해석 연구)

  • Seo, Sangkyu;Hahm, Heecheol;Kang, Yoongoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.76-84
    • /
    • 2018
  • In this paper, the numerical analysis for heat conduction of silica/phenolic composite material, used for solid rocket nozzle liners or insulators, is conducted. A 1-dimensional finite difference method for the analysis of silica/phenolic during the firing of a solid rocket motor is used to calculate heat conduction, considering surface ablation and thermal decomposition. The boundary condition at the nozzle wall, considering the convective heat transfer, is obtained via integration equations. The numerical results of the surface ablation and char depth are compared with the results of a TPEM-10 test motor, finding that the result of calculation agrees with the thermal response of the test motor.

Prediction Method for Thermal Destruction of Internal Insulator in Solid Rocket Motor (고체추진기관 연소관단열재의 열파괴 예측기법)

  • Ji-Yeul Bae;In Sik Hwang;Yoongoo Kang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • This paper investigated the method to predict a thermal response of internal insulation in a solid rocket motor considering both thermal decomposition and ablation. Changes in properties due to the thermal decomposition, swelling of char layer and movement of decomposition gases inside the material were considered during a modeling. And radiative/convective heat flux from the exhaust gas were applied as boundary conditions, while the chemical ablation of the material surface is modeled with algebraic equations. Test SRM with thermocouples was solved for a validation purpose. The results showed that predicted temperatures have identical trends and values compared to the experimental values. And an error of predicted thermal destruction depth was around 0.1 mm.