DOI QR코드

DOI QR Code

Effects of Char Produced from Burning Wood Combustibles on Thermal Pyrolysis

목재 가연물의 연소 시 생성되는 탄화가 열분해에 미치는 영향

  • Hong, Ter-Ki (Dept. of Mechanical System & Automotive Engineering Graduate School of Chosun University) ;
  • Ryu, Myung-Ho (Dept. of Mechanical System & Automotive Engineering Graduate School of Chosun University) ;
  • Lee, Jong Won (Future & Converging Technology Research Division, Technology R & D Head office, Korea Aerospace Research Institute (KARI)) ;
  • Park, Seul-Hyun (School of Mechanical System & Automotive Engineering, Chosun University)
  • 홍터기 (조선대학교 대학원 기계시스템.미래자동차공학과) ;
  • 류명호 (조선대학교 대학원 기계시스템.미래자동차공학과) ;
  • 이종원 (한국항공우주연구원 기술연구본부 미래융합연구부) ;
  • 박설현 (조선대학교 기계시스템.미래자동차공학부)
  • Received : 2019.10.15
  • Accepted : 2019.10.21
  • Published : 2019.10.31

Abstract

To investigate the influence of the char layer formed during the combustion process on the pyrolysis of wood combustibles, ISO 5660-1 cone calorimetry experiments and Fire dynamics simulator (FDS) simulations were performed, and the results from these two methods were compared. The wood combustible selected as the fuel for this study, Douglas fir, has been widely used for the production of building materials, furniture, etc. The heat release rate (HRR) measured from the cone calorimetry experiment was in good agreement with the result predicted by the FDS simulation. However, the FDS simulation failed to predict the heat released by the smoldering combustion process, due to the absence of the char surface reaction in the model. The FDS simulation results clearly indicate that the char layer formed on the surface of combustibles produces a thermal barrier which prevents heat transfer to the interior, thickening the thermal depth and thus reducing the pyrolysis rate of combustibles.

목재 연료의 연소 시 생성되는 탄화가 열분해 과정에 미치는 영향을 고찰해 보기 위해서 ISO 5660-1 콘칼로리미터 실험을 수행하였고 Fire dynamics simulator (FDS) 전산해석 결과와 비교 분석하였다. 목재 연료로는 건축자재, 가구재 등에 대표적으로 사용되는 Douglas-fir를 사용하였다. Douglas-fir 연소 시 측정된 열방출률은 FDS 전산해석을 통해 예측한 결과와 비교적 잘 일치하였지만 탄화 층의 표면반응을 고려하지 않는 FDS 전산해석 모델은 훈소과정에서 지속적으로 방출되는 열을 예측하지 못하였다. 그럼에도 불구하고 FDS 전산해석을 통해 탄화 층은 가연물에 열장벽을 형성하여 내부로의 열전달을 방해하고 열적 두께를 두껍게 하여 열분해율을 감소시키는 것을 확인하였다.

Keywords

References

  1. Korea Forest Service (KFS), "Comprehensive Measures Forest Fire Prevention in South Korea" (2019).
  2. J. D. Philip, D. Dougal, L. B. Craig, W. W. Douglas, L. P. Richard, Jr. J. R. Hall and Jr. H. M. Watts, "SFPE Handbook of Fire Protection Engineering (3rd edit.)" (2005).
  3. H. C. Kung, "A Mathematical Model of Wood Pyrolysis", Combustion and Flame, Vol. 18, pp. 185-195 (1972). https://doi.org/10.1016/S0010-2180(72)80134-2
  4. K. M. Bryden, K. W. Ragland and C. J. Rutland, "Modeling thermally thick pyrolysis of wood", Biomass and Bioenergy, Vol. 22, pp. 41-53 (2002). https://doi.org/10.1016/S0961-9534(01)00060-5
  5. C. D. Blasi, "Modeling and Simulation of Combustion Processes of Charring and Non-Charring Solid Fuels", Progress in Energy and Combustion Science, Vol. 19, pp. 71-104 (1993). https://doi.org/10.1016/0360-1285(93)90022-7
  6. ASTM D4442-92, Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials (2003).
  7. G. Wypych, "3rd Edition PVC Degradation and Stabilization", pp. 241-285 (2015).
  8. C. Anand, B. Shotorban, S. Mahalingam, S. McAllister and R. Weise, "Physics-Based Modeling of Live Wildland FuelIgnition Experiments in the FIST Apparatus", Combustion Science and Technology, Vol. 189, No. 9, pp. 1551-1570 (2017). https://doi.org/10.1080/00102202.2017.1308357
  9. W. Mell, A. Maranghides, R. McDermott and S. Manzello, "Numerical Simulation and Experiments of Burning Douglas Fir Trees", Combustion and Flame, Vol. 156, pp. 2023-2041 (2009). https://doi.org/10.1016/j.combustflame.2009.06.015
  10. G. R. Boarnand, "Polymethylmethacrylate Combustion in a Narrow Channel Apparatus Simulating a Microgravity Environment", University of San Diego State, Master's Thesis (2015).
  11. V. Babrauskas, "Ignition Handbook: Principles and Applications to Fire Safety Engineering, Fire Investigation, Risk Management and Forensic Science", Fire Science Publishers (2003).
  12. B. Schartel and T. R. Hull, "Development of Fire-Retarded Materials-Interpretation of Cone Calorimeter Data", Fire and Materials, Vol. 31, pp. 327-354 (2007). https://doi.org/10.1002/fam.949
  13. J. Hietanienmi, S Hostikkam and J Vaari, "FDS Simulation of Fire Spread-Comparison of Model Results with Experimental Data", VTT Working Papers 4 (2004).