DOI QR코드

DOI QR Code

Effects of Atmospheric Composition Substitution and Pressure on Soot Formation of Jet-A1 Droplet Flames

대기조성 치환 및 압력이 Jet A1 액적화염의 매연입자 생성에 미치는 영향에 관한 연구

  • Nam, Won-Sik (Dept. of Mechanical System & Automotive Engineering Graduate School of Chosun University) ;
  • Ryu, Myung-Ho (Dept. of Mechanical System & Automotive Engineering Graduate School of Chosun University) ;
  • Lee, Jong Won (Future & Converging Technology Research Division, Technology R&D Head office, Korea Aerospace Research Institute (KARI)) ;
  • Park, Seul-Hyun (School of Mechanical System & Automotive Engineering, Chosun University)
  • 남원식 (조선대학교 대학원 기계시스템.미래자동차공학과) ;
  • 류명호 (조선대학교 대학원 기계시스템.미래자동차공학과) ;
  • 이종원 (한국항공우주연구원 기술연구본부 미래융합연구부) ;
  • 박설현 (조선대학교 기계시스템.미래자동차공학부)
  • Received : 2019.10.16
  • Accepted : 2019.10.21
  • Published : 2019.10.31

Abstract

In this study, the soot formation characteristics of Jet-A1 liquid fuel droplet flames were investigated by measuring the soot concentration under atmospheric conditions similar to the working environment of the Korea Space Launch Vehicle (KSLV) To obtain the desired atmospheric conditions, the oxygen concentration in the combustion chamber was maintained at 30% and the pressure was varied between 0.1 and 0.06 MPa. The full-field light extinction technique was used to measure the concentration of soot particles generated by applying the identical to 2-mm-diameter Jet-A1 fuel droplets. The soot concentration of the Jet-A1 droplet flames was the highest in the nitrogen-substituted atmosphere and the lowest in the carbon dioxide-substituted atmosphere, despite the pressure. the pressure was decreased the measured soot concentrations reduced as a function of Pn.

본 연구에서는 한국형발사체와 유사한 작동환경에서 Jet A1 액체연료의 매연 입자특성에 대해 농도를 측정함으로써 그 결과를 고찰하였다. 발사체환경과 유사한 대기 조건을 모사하기 위해 연소챔버의 산소 농도를 30%로 유지하고 내부 압력을 0.06 MPa에서 0.1 MPa 까지 변화시켜가며 실험을 통해 수행하였고, 대기의 조성을 질소, 헬륨, 이산화탄소 가스로 치환하여 실험을 수행하였다. 직경이 2 mm인 Jet-A1 액적에 동일한 점화에너지를 인가하여 발생 되는 매연 입자의 농도를 전역 광소멸 기법을 이용하여 측정하였다. Jet-A1 액적 화염의 매연 입자입자의 농도는 모든 압력조건에서 대기의 조성이 질소로 치환된 경우 높았으며, 이산화탄소로 치환된 경우 가장 낮았다. 압력이 낮아질수록 매연의 입자농도가 감소하였고, 대기압력의 Pn 형태로 감소하는 경향을 확인하였다.

Keywords

References

  1. J. H. Kim, B. S. Do and S. B. Lee, "The Clinical Aspects of Toxic Smoke Inhalation Injury in The Closed Space", Korean J. Burn, pp. 6-10 (2004).
  2. H. G. Kang, "Experimental Study on Soot Formation of Laminar Diffusion Flames : The Effects of Fuel/Air, Fuel Mixture and Pressure", Master's Thesis, Dankook University (1997).
  3. C. J. Dasch, "One-Dimensional Tomography: a Comparison of Abel, Onion-Peeling, and Filtered Backprojection Methods", Applied Optics, Vol. 31, No. 8, pp. 1146-1152 (1992). https://doi.org/10.1364/AO.31.001146
  4. I. Glassman, "Sooting Laminar Diffusion Flames: Effect of Dilution, Additives, Pressure, and Microgravity", In Symposium (International) on Combustion, Vol. 27, No. 1, pp. 1589-1596 (1998).
  5. O. L. Gulder and D. R. Snelling, "Influence of Nitrogen Dilution and Flame Temperature on Soot Formation in Diffusion. Flames", Combust and Flame, Vol. 92, pp. 115-124 (1993). https://doi.org/10.1016/0010-2180(93)90202-E
  6. W. L. Flower and C. T. Bowman, "Soot Production in Axisymmetric Laminar Diffusion Flames at Pressures from One to Ten Atmospheres", In: Symposium (International) on Combustion, pp. 1115-1124 (1988).
  7. W. N. Lee, "The Effects of Pressure on PAH and Soot Formation in Laminar Diffusion Flames", Transactions of the Korean Society of Mechanical Engineers - B, Vol. 22, No. 10, pp. 1445-1453 (1998). https://doi.org/10.22634/KSME-B.1998.22.10.1445
  8. S. H Park and M. Y. Choi, "Influences of Residence Time of Fuel Vapor Transport on Sooting Behavior of Ethanol Droplet Flames in Microgravity", Microgravity Science and Technology, Vol. 27, No. 5, pp. 337-344 (2015). https://doi.org/10.1007/s12217-015-9420-6
  9. M. Frenklach, D. W. Clary, W. C. Gardiner Jr and S. E. Stein, "Detailed Kinetic Modeling of Soot Formation in Shocktube Pyrolysis of Ace tylene", In Symposium (International) on Combustion, Vol. 20, No. 1, pp. 887-901 (1985).
  10. S. H, Kim, S. R. Kim, S. H. Kim, C. H. Kim, D. B. Seo, S. P. Woo, B. I. Yu, Y. S. So, et al., "Current Status of Development Test of 75 tonf Engine System for KSLV-II", Proceedings of the 2017 KSPE Spring Conference, The Korean Society of Propulsion Engineers. pp. 99-103 (2017).
  11. H. J. Kwon, "Study of Minimum Ignition Energy Measurements for Jet A1 Liquid Fuel and Characteristics of Flame Spread for Solid Fuel under Elevated Oxygen Concentrations and Reduced Atmospheric Pressures", Master's Thesis, Chosun University (2017).
  12. S. H. Kim, "A Study on The Soot Volume Fraction in Various Flickering Flames Using Laser Induced Incandescence", Master's Thesis, Pusan National University (2007).
  13. M. H. Ryu, "A Study of the Concentration Measurements of Soot Particles Formed Within Diffusion Flames", Master's Thesis, Chosun University (2016).
  14. S. M, Avdoshenko and A. Strachan, "High-temperature Emissivity of Silica, Zirconia and Samaria from Ab initio Simulations: Role of Defects and Disorder", Modelling and Simulation in Materials Science and Engineering, Vol. 22, No. 7, 075004 (2014). https://doi.org/10.1088/0965-0393/22/7/075004
  15. W. S. Nam, "Characteristics of Flame Spread on Thermallythin Combustibles exposed to Atmospheric Conditions of a Pressurized Modulefor Manned Space Flight", Master's Thesis, Chosun University (2019).
  16. S. H. Park, S. C. Choi, M. Y. Choi and A. Yozgatligil, "New Observations of Isolated Ethanol Droplet Flames in Microgravity Conditions", Combust. Sci. Technol., Vol. 180, No. 4, pp. 631-651 (2008). https://doi.org/10.1080/00102200701839022